精英家教网 > 高中数学 > 题目详情

【题目】已知圆恰好经过椭圆的两个焦点和两个顶点.

(1)求椭圆的方程;

(2)经过原点的直线 (不与坐标轴重合)交椭圆两点, 轴,垂足为,连接并延长交椭圆,证明:以线段为直径的圆经过点.

【答案】(1);(2)见解析

【解析】试题分析:(1)由恰好经过椭圆的两个焦点和两个顶点可得 从而可得椭圆的方程;(2)设直线的斜率为,可得线的斜率为 的方程为,与椭圆方程联立,利用韦达定理求得的坐标,可得直线的斜率为,即得,以线段为直径的圆一定经过点.

试题解析:(1)由题意可知,

所以椭圆的方程为.

(2)证明:设直线的斜率为 ,在直线的方程为

.

直线的斜率为,所以直线的方程为

联立

横坐标分別为.由韦达定理知: ,

所以,于是

所以直线的斜率为

因为.所以

所以以线段为直径的圆一定经过点.

【方法点晴】本题主要考查待定系数法求椭圆标准方程及曲线过定点问题,属于难题.解决曲线过定点问题一般有两种方法:① 探索曲线过定点时,可设出曲线方程 ,然后利用条件建立等量关系进行消元,借助于曲线系的思想找出定点,或者利用方程恒成立列方程组求出定点坐标.② 从特殊情况入手,先探求定点,再证明与变量无关.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】4月23日是世界读书日,某中学在此期间开展了一系列的读书教育活动,为了解本校学生课外阅读情况,学校随机抽取了100名学生对其课外阅读时间进行调查,下面是根据调查结果绘制的学生日均课外阅读时间(单位:分钟)的频率分布直方图,若将日均课外阅读时间不低于60分钟的学生称为读书谜,低于60分钟的学生称为非读书谜

1的值并估计全校3000名学生中读书谜大概有多少?(将频率视为概率)

2根据已知条件完成下面2×2的列联表,并据此判断是否有99%的把握认为读书谜与性别有关?

非读书迷

读书迷

合计

15

45

合计

附:.

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,小明想将短轴长为2,长轴长为4的一个半椭圆形纸片剪成等腰梯形ABDE,且梯形ABDE内接于半椭圆,DEAB,AB为短轴,OC为长半轴

(1)求梯形ABDE上底边DE与高OH长的关系式;

(2)若半椭圆上到H的距离最小的点恰好为C点,求底边DE的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的各项均为正数, 是数列的前项和,且.

1)求数列的通项公式;

2)已知,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A、B、C的 对边分别为a、b、c,且
(1)求 的值;
(2)若 ,求tanA及tanC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数为自然对数的底数), .

(1)若,且直线分别与函数的图象交于,求两点间的最短距离;

(2)若时,函数的图象恒在的图象上方,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知与曲线相切的直线,与轴, 轴交于两点, 为原点, ,( .

1)求证: 相切的条件是: .

2)求线段中点的轨迹方程;

3)求三角形面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y=cosπx的图象与函数y=( |x1|(﹣3≤x≤5)的图象所有交点的横坐标之和等于(
A.4
B.6
C.8
D.10

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的对称轴为坐标轴,离心率为,且一个焦点坐标为

(1)求椭圆的方程;

(2)设直线与椭圆相交于两点,以线段为邻边作平行四边形,其中点在椭圆上, 为坐标原点,求点到直线的距离的最小值.

查看答案和解析>>

同步练习册答案