精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的对称轴为坐标轴,离心率为,且一个焦点坐标为

(1)求椭圆的方程;

(2)设直线与椭圆相交于两点,以线段为邻边作平行四边形,其中点在椭圆上, 为坐标原点,求点到直线的距离的最小值.

【答案】(1)(2)

【解析】试题分析:

(1)由题意可求得 椭圆的方程为.

(2)首先讨论斜率存在的情况,点到直线的距离的最小值为.

当斜率不存在时额外讨论可得结论.

试题解析:

解:(1)由已知设椭圆的方程为,则.

,得 ,∴椭圆的方程为.

(2)当直线斜率存在时,设直线的方程为.

则由消去.

.①

设点 的坐标分别是 .

∵四边形为平行四边形,∴

由于点在椭圆上,∴

从而,化简得,经检验满足①式.

又点到直线的距离为.

当且仅当时,等号成立.

当直线斜率不存在时,由对称性知,点一定在轴上,

从而点的坐标为,直线的方程为,∴点到直线的距离为1.

∴点到直线的距离的最小值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆恰好经过椭圆的两个焦点和两个顶点.

(1)求椭圆的方程;

(2)经过原点的直线 (不与坐标轴重合)交椭圆两点, 轴,垂足为,连接并延长交椭圆,证明:以线段为直径的圆经过点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的三个顶点 ,求:

1边上的高所在直线的方程;

2的垂直平分线所在直线的方程;

3边的中线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设命题实数满足),命题实数满足.

1)若且“”为真,求实数的取值范围;

(2)若的充分不必要条件,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高二丈,问积几何?”其意思为:“今有底面为矩形的屋脊状的锲体,下底面宽3丈,长4丈,上棱长2丈,高2丈,问:它的体积是多少?”已知1丈为10尺,该锲体的三视图如图所示,则该锲体的体积为( )

A. 10000立方尺 B. 11000立方尺 C. 12000立方尺 D. 13000立方尺

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱柱中,侧面为矩形, 的中点, 交于点 侧面.

(1)证明:

(2)若,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,气象部门预报,在海面上生成了一股较强台风,在据台风中心60千米的圆形区域内将受到严重破坏,台风中心这个从海岸M点登陆,并以72千米/小时的速度沿北偏西60°的方向移动,已知M点位于A城的南偏东15°方向,距A城 千米;M点位于B城的正东方向,距B城 千米,假设台风在移动的过程中,其风力和方向保持不变,请回答下列问题:
(1)A城和B城是否会受到此次台风的侵袭?并说明理由;
(2)若受到此次台风的侵袭,改城受到台风侵袭的持续时间有多少小时?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为直角梯形, 垂直于底面 分别为 的中点.

(Ⅰ)求证:

(Ⅱ)求四棱锥的体积和截面的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

(1)若,求在区间[0,3]上的最大值;

(2)若,写出的单调区间;

(3)若存在,使得方程有三个不相等的实数解,求的取值范围.

查看答案和解析>>

同步练习册答案