【题目】已知椭圆的对称轴为坐标轴,离心率为,且一个焦点坐标为.
(1)求椭圆的方程;
(2)设直线与椭圆相交于两点,以线段为邻边作平行四边形,其中点在椭圆上, 为坐标原点,求点到直线的距离的最小值.
【答案】(1)(2)
【解析】试题分析:
(1)由题意可求得, ,∴椭圆的方程为.
(2)首先讨论斜率存在的情况,点到直线的距离的最小值为.
当斜率不存在时额外讨论可得结论.
试题解析:
解:(1)由已知设椭圆的方程为,则.
由,得, , ,∴椭圆的方程为.
(2)当直线斜率存在时,设直线的方程为.
则由消去得.
.①
设点, , 的坐标分别是, , .
∵四边形为平行四边形,∴,
,
由于点在椭圆上,∴,
从而,化简得,经检验满足①式.
又点到直线的距离为.
当且仅当时,等号成立.
当直线斜率不存在时,由对称性知,点一定在轴上,
从而点的坐标为或,直线的方程为,∴点到直线的距离为1.
∴点到直线的距离的最小值为.
科目:高中数学 来源: 题型:
【题目】已知圆恰好经过椭圆的两个焦点和两个顶点.
(1)求椭圆的方程;
(2)经过原点的直线 (不与坐标轴重合)交椭圆于两点, 轴,垂足为,连接并延长交椭圆于,证明:以线段为直径的圆经过点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高二丈,问积几何?”其意思为:“今有底面为矩形的屋脊状的锲体,下底面宽3丈,长4丈,上棱长2丈,高2丈,问:它的体积是多少?”已知1丈为10尺,该锲体的三视图如图所示,则该锲体的体积为( )
A. 10000立方尺 B. 11000立方尺 C. 12000立方尺 D. 13000立方尺
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,气象部门预报,在海面上生成了一股较强台风,在据台风中心60千米的圆形区域内将受到严重破坏,台风中心这个从海岸M点登陆,并以72千米/小时的速度沿北偏西60°的方向移动,已知M点位于A城的南偏东15°方向,距A城 千米;M点位于B城的正东方向,距B城 千米,假设台风在移动的过程中,其风力和方向保持不变,请回答下列问题:
(1)A城和B城是否会受到此次台风的侵袭?并说明理由;
(2)若受到此次台风的侵袭,改城受到台风侵袭的持续时间有多少小时?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com