ÒÑÖªÊýÁÐ{an}µÄÇ°nÏîºÍSn=2+(n-1)(
1
2
)n-1(n¡ÊN*)
£¬Ôò´æÔÚÊýÁÐ{xn}£¬{yn}£¬Ê¹µÃ£º£¨¡¡¡¡£©
A£®an=xn+yn£¬n¡ÊN*£¬ÆäÖÐ{xn}£¬{yn}ΪµÈ²îÊýÁÐ
B£®an=xnyn£¬n¡ÊN*£¬ÆäÖÐ{xn}£¬{yn}ΪµÈ±ÈÊýÁÐ
C£®an=xn+yn£¬n¡ÊN*£¬ÆäÖÐ{xn}ΪµÈ²îÊýÁУ¬{yn}ΪµÈ±ÈÊýÁÐ
D£®an=xnyn£¬n¡ÊN*£¬ÆäÖÐ{xn}ΪµÈ²îÊýÁУ¬{yn}ΪµÈ±ÈÊýÁÐ
µ±n=1ʱ£¬a1=S1=a£¬
µ±n¡Ý2ʱ£¬an=Sn-Sn-1
=[2+(n-1)(
1
2
)
n-1
]-[2+(n-2)(
1
2
)
n-2
]
=(n-1)(
1
2
)
n-1
-(n-2)(
1
2
)
n-2

=(n-1)(
1
2
)
n-1
-(2n-4)(
1
2
)
n-1

=(3-n)(
1
2
)
n-1

Áîxn=3-n£¬yn=(
1
2
)
n-1

Ôò{xn}ΪµÈ²îÊýÁУ¬{yn}ΪµÈ±ÈÊýÁÐ
¹Êan=xnyn£¬n¡ÊN*£¬ÆäÖÐ{xn}ΪµÈ²îÊýÁУ¬{yn}ΪµÈ±ÈÊýÁÐ
¹ÊÑ¡D
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£ºµ¥Ñ¡Ìâ

ÔڵȱÈÊýÁÐ{an}ÖУ¬Èôa3¡¢a7ÊÇ·½³Ì3x2-11x+9=0µÄÁ½¸ù£¬Ôòa5µÄֵΪ£¨¡¡¡¡£©
A£®3B£®¡À3C£®
3
D£®¡À
3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£ºµ¥Ñ¡Ìâ

ÔÚ¡÷ABCÖУ¬a£¬b£¬c·Ö±ðÊÇA£¬B£¬CµÄ¶Ô±ß£¬ÒÑÖªa£¬b£¬c³ÉµÈ±ÈÊýÁУ¬ÇÒa2-c2=ac-bc£¬Ôò
c
bsinB
µÄֵΪ£¨¡¡¡¡£©
A£®
1
2
B£®
3
2
C£®
2
3
3
D£®
3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

ÊýÁÐ{an}ÖУ¬a1=1£¬an+1=
1
2
a2n
-an+c
£¨c£¾1Ϊ³£Êý£¬n=1£¬2£¬3£¬¡­£©£¬ÇÒa3-a2=
1
8
.

£¨¢ñ£©ÇócµÄÖµ£»
£¨¢ò£©¢ÙÖ¤Ã÷£ºan£¼an+1£»
¢Ú²Â²âÊýÁÐ{an}ÊÇ·ñÓм«ÏÞ£¿Èç¹ûÓУ¬Ð´³ö¼«ÏÞµÄÖµ£¨²»±ØÖ¤Ã÷£©£»
£¨¢ó£©±È½Ï
n
k=1
1
ak
Óë
40
39
an+1
µÄ´óС£¬²¢¼ÓÒÔÖ¤Ã÷£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£ºµ¥Ñ¡Ìâ

ÈôÊýÁÐ{an}ÊǵȱÈÊýÁУ¬ÔòÏÂÁÐÊýÁÐÒ»¶¨ÊǵȱÈÊýÁеÄÊÇ£¨¡¡¡¡£©
A£®{lg
a2n
}
B£®{2+an}C£®{
1
an
}
D£®{
an
}

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£ºµ¥Ñ¡Ìâ

ÒÑÖªµÈ±ÈÊýÁÐ{an}µÄ¹«±ÈΪ-
1
4
£¬Ôò
a1+a3+a5+¡­+a2n-1
a3+a5+a7+¡­+a2n+1
=£¨¡¡¡¡£©
A£®-
1
16
B£®16C£®
1
2
D£®2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£ºÌî¿ÕÌâ

Èý¸ö²»Í¬µÄʵÊýa£¬b£¬c³ÉµÈ²îÊýÁУ¬ÇÒa£¬c£¬b³ÉµÈ±ÈÊýÁУ¬Ôòa£ºb£ºc=______£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£ºµ¥Ñ¡Ìâ

ÒÑÖªµÈ±ÈÊýÁÐ{an}Âú×ãa1+a2=4£¬a2+a3=12£¬Ôòa5=£¨¡¡¡¡£©
A£®64B£®81C£®128D£®243

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

ÒÑÖªÊýÁÐ{an}ΪµÈ±ÈÊýÁУ¬ÇÒa2=6£¬6a1+a3=30£®
£¨¢ñ£©Çóan£®
£¨¢ò£©Éèbn=log3a1+log3a2+¡­+log3an£¬ÈôµÈ±ÈÊýÁÐ{an}µÄ¹«±Èq£¾2£¬ÇóÊýÁÐ{bn}µÄͨÏʽ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸