ÒÑÖªÊýÁÐ{a
n}µÄÇ°nÏîºÍ
Sn=2+(n-1)()n-1(n¡ÊN*)£¬Ôò´æÔÚÊýÁÐ{x
n}£¬{y
n}£¬Ê¹µÃ£º£¨¡¡¡¡£©
A£®an=xn+yn£¬n¡ÊN*£¬ÆäÖÐ{xn}£¬{yn}ΪµÈ²îÊýÁÐ |
B£®an=xnyn£¬n¡ÊN*£¬ÆäÖÐ{xn}£¬{yn}ΪµÈ±ÈÊýÁÐ |
C£®an=xn+yn£¬n¡ÊN*£¬ÆäÖÐ{xn}ΪµÈ²îÊýÁУ¬{yn}ΪµÈ±ÈÊýÁÐ |
D£®an=xnyn£¬n¡ÊN*£¬ÆäÖÐ{xn}ΪµÈ²îÊýÁУ¬{yn}ΪµÈ±ÈÊýÁÐ |
µ±n=1ʱ£¬a
1=S
1=a£¬
µ±n¡Ý2ʱ£¬a
n=S
n-S
n-1=[
2+(n-1)()n-1]-[
2+(n-2)()n-2]
=
(n-1)()n-1-
(n-2)()n-2=
(n-1)()n-1-
(2n-4)()n-1=
(3-n)()n-1Áîx
n=3-n£¬y
n=
()n-1Ôò{x
n}ΪµÈ²îÊýÁУ¬{y
n}ΪµÈ±ÈÊýÁÐ
¹Êa
n=x
ny
n£¬n¡ÊN
*£¬ÆäÖÐ{x
n}ΪµÈ²îÊýÁУ¬{y
n}ΪµÈ±ÈÊýÁÐ
¹ÊÑ¡D
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ
¿ÆÄ¿£º¸ßÖÐÊýѧ
À´Ô´£º²»Ïê
ÌâÐÍ£ºµ¥Ñ¡Ìâ
ÔڵȱÈÊýÁÐ{a
n}ÖУ¬Èôa
3¡¢a
7ÊÇ·½³Ì3x
2-11x+9=0µÄÁ½¸ù£¬Ôòa
5µÄֵΪ£¨¡¡¡¡£©
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ
À´Ô´£º²»Ïê
ÌâÐÍ£ºµ¥Ñ¡Ìâ
ÔÚ¡÷ABCÖУ¬a£¬b£¬c·Ö±ðÊÇA£¬B£¬CµÄ¶Ô±ß£¬ÒÑÖªa£¬b£¬c³ÉµÈ±ÈÊýÁУ¬ÇÒa
2-c
2=ac-bc£¬Ôò
µÄֵΪ£¨¡¡¡¡£©
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ
À´Ô´£º²»Ïê
ÌâÐÍ£º½â´ðÌâ
ÊýÁÐ{a
n}ÖУ¬a
1=1£¬
an+1=-an+c£¨c£¾1Ϊ³£Êý£¬n=1£¬2£¬3£¬¡£©£¬ÇÒ
a3-a2=.£¨¢ñ£©ÇócµÄÖµ£»
£¨¢ò£©¢ÙÖ¤Ã÷£ºa
n£¼a
n+1£»
¢Ú²Â²âÊýÁÐ{a
n}ÊÇ·ñÓм«ÏÞ£¿Èç¹ûÓУ¬Ð´³ö¼«ÏÞµÄÖµ£¨²»±ØÖ¤Ã÷£©£»
£¨¢ó£©±È½Ï
n |
|
k=1 |
Óë
an+1µÄ´óС£¬²¢¼ÓÒÔÖ¤Ã÷£®
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ
À´Ô´£º²»Ïê
ÌâÐÍ£ºµ¥Ñ¡Ìâ
ÈôÊýÁÐ{a
n}ÊǵȱÈÊýÁУ¬ÔòÏÂÁÐÊýÁÐÒ»¶¨ÊǵȱÈÊýÁеÄÊÇ£¨¡¡¡¡£©
A£®{lg} | B£®{2+an} | C£®{} | D£®{} |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ
À´Ô´£º²»Ïê
ÌâÐÍ£ºµ¥Ñ¡Ìâ
ÒÑÖªµÈ±ÈÊýÁÐ{a
n}µÄ¹«±ÈΪ
-£¬Ôò
a1+a3+a5+¡+a2n-1 |
a3+a5+a7+¡+a2n+1 |
=£¨¡¡¡¡£©
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ
À´Ô´£º²»Ïê
ÌâÐÍ£ºÌî¿ÕÌâ
Èý¸ö²»Í¬µÄʵÊýa£¬b£¬c³ÉµÈ²îÊýÁУ¬ÇÒa£¬c£¬b³ÉµÈ±ÈÊýÁУ¬Ôòa£ºb£ºc=______£®
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ
À´Ô´£º²»Ïê
ÌâÐÍ£ºµ¥Ñ¡Ìâ
ÒÑÖªµÈ±ÈÊýÁÐ{a
n}Âú×ãa
1+a
2=4£¬a
2+a
3=12£¬Ôòa
5=£¨¡¡¡¡£©
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ
À´Ô´£º²»Ïê
ÌâÐÍ£º½â´ðÌâ
ÒÑÖªÊýÁÐ{an}ΪµÈ±ÈÊýÁУ¬ÇÒa2=6£¬6a1+a3=30£®
£¨¢ñ£©Çóan£®
£¨¢ò£©Éèbn=log3a1+log3a2+¡+log3an£¬ÈôµÈ±ÈÊýÁÐ{an}µÄ¹«±Èq£¾2£¬ÇóÊýÁÐ{bn}µÄͨÏʽ£®
²é¿´´ð°¸ºÍ½âÎö>>