【题目】已知函数.
(1)求的单调递增区间;
(2)若函数有两个极值点且恒成立,求实数的取值范围.
【答案】(1)见解析;(2)
【解析】
(1)的定义域为,对求导,分、和三种情况,分别讨论,可求得函数的单调递增区间;
(2)由(1)知有两个极值点时,等价于方程有两个不等正根,可求得,,及,,由恒成立,可得恒成立,构造函数,求导并判断单调性可知,令即可.
(1)的定义域为,求导得,
令,得,,
若时,,在上恒成立,单调递增;
若时,,方程的两根为,.
当时,,,则时,,故在单调递增;
当时,,则或时,,故在和上单调递增.
综上,当时,的单调递增区间为;当时,的单调递增区间为,;当时,的单调递增区间为.
(2)由(1)知有两个极值点时,等价于方程的有两个不等正根
,,,,
此时不等式恒成立,等价于对恒成立,
可化为恒成立,
令,
则,
,,,
在恒成立,在上单调递减,
,
.
故实数的取值范围是.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线的参数方程为(,为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的坐标方程为,若直线与曲线相切.
(1)求曲线的极坐标方程;
(2)在曲线上取两点、于原点构成,且满足,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C:x2+(y-1)2=5,直线l:mx-y+1-m=0(m∈R).
(1)判断直线l与圆C的位置关系;
(2)设直线l与圆C交于A,B两点,若直线l的倾斜角为120°,求弦AB的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,直三棱柱中,且,是棱上的动点,是的中点.
(1)当是中点时,求证:平面;
(2)在棱上是否存在点,使得平面与平面所成锐二面角为,若存在,求的长,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的焦距为,椭圆上任意一点到椭圆两个焦点的距离之和为6.
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线 与椭圆交于两点,点(0,1),且=,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线:的左、右焦点分别是、,左、右两顶点分别是、,弦AB和CD所在直线分别平行于x轴与y轴,线段BA的延长线与线段CD相交于点如图).
⑴若是的一条渐近线的一个方向向量,试求的两渐近线的夹角;
⑵若,,,,试求双曲线的方程;
⑶在⑴的条件下,且,点C与双曲线的顶点不重合,直线和直线与直线l:分别相交于点M和N,试问:以线段MN为直径的圆是否恒经过定点?若是,请求出定点的坐标;若不是,试说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地环保部门跟踪调查一种有害昆虫的数量.根据调查数据,该昆虫的数量(万只)与时间(年)(其中)的关系为.为有效控制有害昆虫数量、保护生态环境,环保部门通过实时监控比值(其中为常数,且)来进行生态环境分析.
(1)当时,求比值取最小值时的值;
(2)经过调查,环保部门发现:当比值不超过时不需要进行环境防护.为确保恰好3年不需要进行保护,求实数的取值范围.(为自然对数的底, )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,四边形为平行四边形,,为中点,
(1)求证:平面;
(2)若是正三角形,且.
(Ⅰ)当点在线段上什么位置时,有平面 ?
(Ⅱ)在(Ⅰ)的条件下,点在线段上什么位置时,有平面平面?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com