精英家教网 > 高中数学 > 题目详情
(2013•内江二模)已知cosα=
3
5
(0<α<π)
,则sin(α-
π
6
)
=
4
3
-3
10
4
3
-3
10
分析:由α的范围及cosα的值,利用同角三角函数间的基本关系求出sinα的值,所求式子利用两角和与差的正弦函数公式及特殊角的三角函数值化简后,将各自的值代入计算即可求出值.
解答:解:∵0<α<π,cosα=
3
5

∴sinα=
1-cos2α
=
4
5

则sin(α-
π
6
)=sinαcos
π
6
-cosαsin
π
6
=
4
5
×
3
2
-
3
5
×
1
2
=
4
3
-3
10

故答案为:
4
3
-3
10
点评:此题考查了两角和与差的正弦函数公式,以及同角三角函数间的基本关系,熟练掌握公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•内江二模)已知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的离心率e=
2
3
3
,过点A(0,-b)和B(a,0)的直线与原点的距离为
3
2

(1)求双曲线的方程;
(2)直线y=kx+m(k≠0,m≠0)与该双曲线交于不同的两点C、D,且C、D两点都在以A为圆心的同一圆上,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•内江二模)如图,在多面体ABCDEF中,ABCD为菱形,∠ABC=60°,EC⊥面ABCD,FA⊥面ABCD,G为BF的中点,若EG∥面ABCD.
(Ⅰ)求证:EG⊥面ABF;
(Ⅱ)若AF=AB,求二面角B-EF-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•内江二模)已知数列{an}的首项a1=5,前n项和为Sn,且Sn+1=2Sn+n+5(n∈N*
(1)证明数列{an+1}是等比数列;
(2)令f(x)=a1x+a2x2+…+anxn,求函数f(x)在点x=1处的导数.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•内江二模)设集合A={x|x2+3x<0},B={x|y=
-x-1
},则A∩B=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•内江二模)已知复数z=2i(2+i)(i为虚数单位),则复数z在复平面上所对应的点在(  )

查看答案和解析>>

同步练习册答案