精英家教网 > 高中数学 > 题目详情
4.某集合S={2,3,7,8}具备以下两个特点:①它的元素都是正整数;②若x∈S,则10-x∈S,我们把这样的集合称作10的兑换集合,根据以上内容解答下列问题.
(1)除了上述集合外,写出两个10的兑换集合.
(2)10的兑换集合中存在元素个数为5的集合吗?存在元素为6的集合吗?试举例说明.

分析 利用10的兑换集合的概念,即可得出结论.

解答 解:(1)10的兑换集合为{2,8},{3,7}.
(2)10的兑换集合中存在元素个数为5的集合为{2,3,5,7,8};存在元素为6的集合为{2,3,4,6,7,8}.

点评 本题主要考查集合的表示方法,要求熟练掌握描述法和列举法表示集合,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.设函数f(x)=ex-mx,x∈R.
(1)已知曲线f(x)在点(0,f(0))处的切线方程为x+by=1,求实数m的值;
(2)若f(x)>0恒成立,求m的范围;
(3)当m>1时,求函数f(x)在[0,m]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设p:A={x|-1<x<1},q:B={x|b-a<x<b+a}
(1)当a=2时,若p是q的充分不必要条件,求实数b的范围;
(2)若a=1是A∩B=∅的充分条件,求实数b的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知f(2x+1)的定义域是[-1,3],且f(x)的定义域由f(2x+1)确定,试求f(x)的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.集合M={0,2,3,5},A={y|y=ab,a,b∈M},用列举法表示A={0,6,10,15}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.判断下列函数的奇偶性
①f(x)=xlg(x+$\sqrt{{x}^{2}+1}$);
②f(x)=(1-x)$\sqrt{\frac{1+x}{1-x}}$;
③f(x)=$\left\{\begin{array}{l}{-{x}^{2}+2x+1(x>0)}\\{{x}^{2}+2x-1(x<0)}\end{array}\right.$;
④f(x)=$\frac{\sqrt{4-{x}^{2}}}{|x+3|-3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.给定下列判断:①∅?{0};②∅=0;③0∈{∅};④0∉∅;⑤∅⊆{∅};⑥∅∈{∅}.其中判断正确的是①④⑤⑥(填序号)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=3x-2,且f(a)=4,则a的值是2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若θ∈($\frac{5}{4}$π,$\frac{3}{2}$π),则$\sqrt{1-2sinθcosθ}$为(  )
A.cosθ-sinθB.sinθ+cosθC.sinθ-cosθD.-cosθ-sinθ

查看答案和解析>>

同步练习册答案