精英家教网 > 高中数学 > 题目详情

在平面几何里有射影定理:设△ABC的两边AB⊥AC,D是A点在BC上的射影,则AB2=BD·BC.拓展到空间,在四面体A—BCD中,DA⊥面ABC,点O是A在面BCD内的射影,且O在面BCD内,类比平面三角形射影定理,△ABC,△BOC,△BDC三者面积之间关系为           

解析试题分析:依题意作出四面体A—BCD.连接DO并延长交BC于点E,连AO、AE,则易知AO⊥DE,BC⊥AO.由DA⊥面ABC ,得DA⊥BC,从而BC⊥面AED,所以DE⊥BC,AE⊥BC.又易知△AED为直角三角形,其中,AO为斜边ED上的高,所以由射影定理,.又所以.

考点:射影定理、类比思想

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

若一条直线和平面所成的角为,则此直线与该平面内任意一条直线所成角的取值范围是                      .

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

等腰梯形,上底,腰,下底,以下底所在直线为x轴,则由斜二测画法画出的直观图的面积为_______.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

给定下列四个命题:
①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;
②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;
③垂直于同一直线的两条直线相互平行;
④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,为真命题的是                

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

A(1,-2,1),B(2,2,2),点P在z轴上,且|PA|=|PB|,则点P的坐标为               .

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

在底面为正方形的长方体上任意选择4个顶点,它们可能是如下各种几何形体的4个顶点,这些几何形体是            (写出所有正确结论的编号)
①矩形;②不是矩形的平行四边形;③有三个面为直角三角形,有一个面为等腰三角形的四面体;④每个面都是等腰三角形的四面体;⑤每个面都是直角三角形的四面体.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知一个平面与正方体的12条棱的夹角均为,那么        .

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

正方体的棱长为2,则异面直线与AC之间的距离为_________。

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

设α,β为两个不重合的平面,m,n为两条不重合的直线,给出下列四个命题:
①若m⊥n,m⊥α,n?α则n∥α;
②若α⊥β,则α∩β=m,n?α,n⊥m,则n⊥β;
③若m⊥n,m∥α,n∥β,则α⊥β;
④若n?α,m?β,α与β相交且不垂直,则n与m不垂直.
其中,所有真命题的序号是________.

查看答案和解析>>

同步练习册答案