精英家教网 > 高中数学 > 题目详情

正方体的棱长为2,则异面直线与AC之间的距离为_________。

解析试题分析:如图,连结BD交于AC于点O,再作,垂足为H,则OH为异面直线与AC之间的距离。因为,所以,求得OH=

考点:异面直线之间的距离
点评:求异面直线之间的距离,关键是找出它们的公垂线。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

在平面几何里有射影定理:设△ABC的两边AB⊥AC,D是A点在BC上的射影,则AB2=BD·BC.拓展到空间,在四面体A—BCD中,DA⊥面ABC,点O是A在面BCD内的射影,且O在面BCD内,类比平面三角形射影定理,△ABC,△BOC,△BDC三者面积之间关系为           

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

是两条不同的直线,是两个不同的平面,则下列正确命题的序号是   .
①.若  , 则   ;      ②.若,则   
③.若,则;      ④.若,则

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

下列命题中正确的是              .(填上你认为所有正确的选项)
①空间中三个平面,若,则
②若为三条两两异面的直线,则存在无数条直线与都相交;
③球与棱长为正四面体各面都相切,则该球的表面积为
④三棱锥中,.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

如图,正方体的棱长为1,的中点,为线段上的动点,过点的平面截该正方体所得的截面记为,则下列命题正确的是         (写出所有正确命题的编号)。

①当时,为四边形
②当时,为等腰梯形
③当时,的交点满足
④当时,为六边形
⑤当时,的面积为

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

是三条不同的直线, 是三个不同的平面,
①若都垂直,则    
②若,则
③若,则   
④若与平面所成的角相等,则
上述命题中的真命题是__________.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

如图,在三棱锥中,,且平面,过作截面分别交,且二面角的大小为,则截面面积的最小值为      .

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

是两条不同的直线,是两个不同的平面,则下列正确命题的序号
     
①.若  , 则   ;      ②.若,则   
③. 若  ,则   ;      ④.若   ,,则  

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

如图,矩形与矩形所在的平面互相垂直,将沿翻折,翻折后的点E恰与BC上的点P重合.设,则当__时,有最小值.

查看答案和解析>>

同步练习册答案