精英家教网 > 高中数学 > 题目详情
7.对于函数y=2x2+4x-3,当x≤0时,求y的取值范围.

分析 由已知中函数的解析式,分析函数的图象和性质,进而确定函数的最值,可得当x≤0时,y的取值范围.

解答 解:∵函数y=2x2+4x-3的图象是开口朝上且以直线x=-1为对称轴的抛物线,
故当x≤0时,
函数无最大值,当x=-1时,函数取最小值-5,
故当x≤0时,y的取值范围为[-5,+∞)

点评 本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.在直角坐标系xoy中,曲线C1的参数方程为$\left\{{\begin{array}{l}{x=\sqrt{3}cosα}\\{y=sinα}\end{array}}\right.$,(α为参数),以原点O为极点,x轴正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为$ρsin(θ-\frac{π}{4})=2\sqrt{2}$.
(1)求曲线C1的普通方程与曲线C2的直角坐标方程;
(2)设P为曲线C1上的动点,求点P到C2上点的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数y=x2-2x+5,求函数在区间[m,3]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.(1)已知函数f(x)=x2,求f(x-1);
(2)已知函数f(x-1)=x2,求f(x)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.求y=3x2-6lnx的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=$\frac{2}{x}$-x,对$?x∈[\frac{1}{3},\frac{2}{3}]$,有f(1-x)≥$\frac{a}{f(x)}$恒成立,则实数a的取值范围为(-∞,$\frac{49}{4}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在平面直角坐标系xOy中,已知圆经过点A(2,0)和点B(3,1),且圆心C在直线x-y-3=0上,过点P(0,1)且斜率为k的直线与圆C相交于不同的两点.求圆C的方程,同时求出k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.sinα+cos(α+$\frac{π}{6}$)=$\frac{1}{3}$,则sin(α+$\frac{π}{3}$)=$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.若数列{an}是首项为6-12t,公差为6的等差数列;数列{bn}的前n项和为Sn=3n-t,其中t为实常数.
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)若数列{bn}是等比数列,试证明:对于任意的n(n∈N*),均存在正整数Cn,使得bn+1=a${\;}_{{c}_{n}}$,并求数列{cn}的前n项和Tn
(Ⅲ)设数列{dn}满足dn=an•bn,若{dn}中不存在这样的项dk,使得“dk<dk-1”与“dk<dk+1”同时成立(其中k≥2,k∈N*),求实数t的取值范围.

查看答案和解析>>

同步练习册答案