精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的离心率为分别为的左、右顶点.

1)求的方程;

2)若点上,点在直线上,且,求的面积.

【答案】1;(2.

【解析】

1)因为,可得,根据离心率公式,结合已知,即可求得答案;

2)点上,点在直线上,且,过点轴垂线,交点为,设轴交点为,可得,可求得点坐标,求出直线的直线方程,根据点到直线距离公式和两点距离公式,即可求得的面积.

1

根据离心率

解得()

的方程为:

2)不妨设,x轴上方

上,点在直线上,且

过点轴垂线,交点为,设轴交点为

根据题意画出图形,如图

根据三角形全等条件“”,

可得:

点为

可得点纵坐标为,将其代入

可得:

解得:

点为

①当点为时,

可得:点为

画出图象,如图

,

可求得直线的直线方程为:

根据点到直线距离公式可得到直线的距离为:

根据两点间距离公式可得:

面积为:

②当点为时,

可得:点为

画出图象,如图

,

可求得直线的直线方程为:

根据点到直线距离公式可得到直线的距离为:

根据两点间距离公式可得:

面积为:

综上所述,面积为:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花做垃圾处理.

)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.

)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:

日需求量n

14

15

16

17

18

19

20

频数

10

20

16

16

15

13

10

(i)假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数;

(ii)若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.

(命题意图)本题主要考查给出样本频数分别表求样本的均值、将频率做概率求互斥事件的和概率,是简单题.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设有下列四个命题:

p1:两两相交且不过同一点的三条直线必在同一平面内.

p2:过空间中任意三点有且仅有一个平面.

p3:若空间两条直线不相交,则这两条直线平行.

p4:若直线l平面α,直线m⊥平面α,则ml.

则下述命题中所有真命题的序号是__________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数是定义在上的函数,满足,且对任意的,恒有,已知当时,,则有(  )

A.函数的最大值是1,最小值是

B.函数是周期函数,且周期为2

C.函数上递减,在上递增

D.时,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在长方体中,点分别在棱上,且

1)证明:点在平面内;

2)若,求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为(为参数,),以原点O为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为.

1)求曲线的普通方程和的直角坐标方程;

2)已知,曲线的交点AB满足(A为第一象限的点),求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线的参数方程为为参数),为曲线上的一动点.

(I)求动点对应的参数从变动到时,线段所扫过的图形面积;

(Ⅱ)若直线与曲线的另一个交点为,是否存在点,使得为线段的中点?若存在,求出点坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知分别为椭圆的左、右焦点,直线过点且垂直于椭圆的长轴,动直线垂直于直线于点,线段的中垂线交于点.记点的轨迹为曲线.

1)求曲线的方程,并说明是什么曲线;

2)若直线与曲线交于两点,则在圆上是否存在两点,使得?若存在,请求出的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆长轴长为4,右焦点到左顶点的距离为3

1)求椭圆的方程;

2)设过原点的直线交椭圆于两点(不在坐标轴上),连接并延长交椭圆于点,若,求四边形面积的最大值.

查看答案和解析>>

同步练习册答案