精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系中,曲线的参数方程为(为参数,),以原点O为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为.

1)求曲线的普通方程和的直角坐标方程;

2)已知,曲线的交点AB满足(A为第一象限的点),求的值.

【答案】1,当时,.(2

【解析】

1)将曲线的参数方程消去参数,可得解的普通方程,利用极坐标和直角坐标的互化公式,可得解的直角坐标方程;

(2)将直线的参数方程与椭圆方程联立,利用参数的几何意义,计算求解即可.

1

时,

又∵ ,∴

2直线为: (t为参数,)

不妨设对应的直线参数为,且,将代入

, ①

∵已知,∴③.

联立①,③得:. 代入②式,

, ∴

,(为锐角) ∴.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某学校近几年来通过书香校园主题系列活动,倡导学生整本阅读纸质课外书籍.下面的统计图是该校2013年至2018年纸质书人均阅读量的情况,根据统计图提供的信息,下列推断不合理的是(

A.2013年到2016年,该校纸质书人均阅读量逐年增长

B.2013年至2018年,该校纸质书人均阅读量的中位数是46.7

C.2013年至2018年,该校纸质书人均阅读量的极差是45.3

D.2013年至2018年,该校后三年纸质书人均阅读量总和是前三年纸质书人均阅读量总和的2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:

则下面结论中正确的是(

A.新农村建设后,种植收入减少

B.新农村建设后,其他收入增加了

C.新农村建设后,养殖收入没有增加

D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于函数fx=有如下四个命题:

fx)的图像关于y轴对称.

fx)的图像关于原点对称.

fx)的图像关于直线x=对称.

fx)的最小值为2

其中所有真命题的序号是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为分别为的左、右顶点.

1)求的方程;

2)若点上,点在直线上,且,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】十九大以来,某贫困地区扶贫办积极贯彻落实国家精准扶贫的政策要求,带领广大农村地区人民群众脱贫奔小康.经过不懈的奋力拼搏,新农村建设取得巨大进步,农民收入也逐年增加.为了更好的制定2019年关于加快提升农民年收入力争早日脱贫的工作计划,该地扶贫办统计了201850位农民的年收入并制成如下频率分布直方图:

附:参考数据与公式 ,若 ,则① ;② ;③ .

1)根据频率分布直方图估计50位农民的年平均收入(单位:千元)(同一组数据用该组数据区间的中点值表示);

2)由频率分布直方图可以认为该贫困地区农民年收入 X 服从正态分布 ,其中近似为年平均收入 近似为样本方差 ,经计算得:,利用该正态分布,求:

i)在2019年脱贫攻坚工作中,若使该地区约有占总农民人数的84.14%的农民的年收入高于扶贫办制定的最低年收入标准,则最低年收入大约为多少千元?

ii)为了调研精准扶贫,不落一人的政策要求落实情况,扶贫办随机走访了1000位农民.若每个农民的年收入相互独立,问:这1000位农民中的年收入不少于12.14千元的人数最有可能是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中学为研究学生的身体素质与体育锻炼时间的关系,对该校200名高三学生平均每天体育锻炼时间进行调查,如表:(平均每天锻炼的时间单位:分钟)

平均每天锻炼的时间/分钟

总人数

20

36

44

50

40

10

将学生日均体育锻炼时间在的学生评价为“锻炼达标”.

(1)请根据上述表格中的统计数据填写下面的列联表;

锻炼不达标

锻炼达标

合计

20

110

合计

并通过计算判断,是否能在犯错误的概率不超过0.025的前提下认为“锻炼达标”与性别有关?

(2)在“锻炼达标”的学生中,按男女用分层抽样方法抽出10人,进行体育锻炼体会交流,

(i)求这10人中,男生、女生各有多少人?

(ii)从参加体会交流的10人中,随机选出2人作重点发言,记这2人中女生的人数为,求的分布列和数学期望.

参考公式:,其中.

临界值表

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知斜率为1的直线交抛物线)于两点,且弦中点的纵坐标为2.

1)求抛物线的标准方程;

2)记点,过点作两条直线分别交抛物线不同于点)两点,且的平分线与轴垂直,求证:直线的斜率为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1是直角梯形.为折痕将折起,使点到达的位置,且,如图2.

1)证明:平面平面

2)求直线与平面所成角的正弦值.

查看答案和解析>>

同步练习册答案