【题目】已知函数f(x)=cos(2x﹣
)+2cos2x,将函数y=f(x)的图象向右平移
个单位,得到函数y=g(x)的图象,则函数y=g(x)图象的一个对称中心是( )
A.(﹣
,1)
B.(﹣
,1)
C.(
,1)
D.(
,0)
【答案】A
【解析】解:∵f(x)=cos(2x﹣
)+2cos2x=
cos2x+
sin2x+1=
sin(2x+
)+1, ∴将函数y=f(x)的图象向右平移
个单位,得到函数y=g(x)的图象,可得:g(x)=
sin[2(x﹣
)+
]+1=
sin2x+1,
∴令2x=kπ,k∈z,可得x=
,k∈z,
∴当k=﹣1时,可得函数的图象的对称中心为(﹣
,1),
故选:A.
【考点精析】利用函数y=Asin(ωx+φ)的图象变换对题目进行判断即可得到答案,需要熟知图象上所有点向左(右)平移
个单位长度,得到函数
的图象;再将函数
的图象上所有点的横坐标伸长(缩短)到原来的
倍(纵坐标不变),得到函数
的图象;再将函数
的图象上所有点的纵坐标伸长(缩短)到原来的
倍(横坐标不变),得到函数
的图象.
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和
,数列{bn}的前n项和为Bn .
(1)求数列{an}的通项公式;
(2)设
,求数列{cn}的前n项和Cn;
(3)证明:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】非零向量
,
的夹角为
,且满足|
|=λ|
|(λ>0),向量组
,
,
由一个
和两个
排列而成,向量组
,
,
由两个
和一个
排列而成,若
+
+
所有可能值中的最小值为4
2 , 则λ= .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤
),x=﹣
为f(x)的零点,x=
为y=f(x)图象的对称轴,且f(x)在(
,
)上单调,则ω的最大值为( )
A.11
B.9
C.7
D.5
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆E:x2+3y2=m2(m>0)的左顶点是A,左焦点为F,上顶点为B.
(1)当△AFB的面积为
时,求m的值;
(2)若直线l交椭圆E于M,N两点(不同于A),以线段MN为直径的圆过A点,试探究直线l是否过定点,若存在定点,求出这个定点的坐标,若不存在定点,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:
=1(a>b>0)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.
(Ⅰ)求椭圆C的标准方程和长轴长;
(Ⅱ)设F为椭圆C的左焦点,P为直线x=﹣3上任意一点,过点F作直线PF的垂线交椭圆C于M,N,记d1 , d2分别为点M和N到直线OP的距离,证明:d1=d2 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线x2=2py(p>0),F为其焦点,过点F的直线l交抛物线于A、B两点,过点B作x轴的垂线,交直线OA于点C,如图所示.
(Ⅰ)求点C的轨迹M的方程;
(Ⅱ)直线m是抛物线的不与x轴重合的切线,切点为P,M与直线m交于点Q,求证:以线段PQ为直径的圆过点F.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设等差数列{an}的前n项和为Sn , 若Sm﹣1=﹣2,Sm=0,Sm+1=3,其中m≥2,则nSn的最小值为( )
A.﹣3
B.﹣5
C.﹣6
D.﹣9
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com