精英家教网 > 高中数学 > 题目详情
17.已知a>2,函数$f(x)=\left\{\begin{array}{l}{a^x},x<1\\{log_a}x,x≥1\end{array}\right.$,则f[f(2)]等于(  )
A.a2B.loga2C.2D.loga(loga2)

分析 由已知中a>2,函数$f(x)=\left\{\begin{array}{l}{a^x},x<1\\{log_a}x,x≥1\end{array}\right.$,将x=2代入可得答案.

解答 解:∵a>2,函数$f(x)=\left\{\begin{array}{l}{a^x},x<1\\{log_a}x,x≥1\end{array}\right.$,
∴f(2)=loga2∈(0,1),
∴f[f(2)]=${a}^{{log}_{a}2}$=2,
故选:C

点评 本题考查的知识点是分段函数的应用,函数求值,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.二次函数y=x2-x-2的图象如图所示,则函数值y<0时x的取值范围是(  )
A.x<-1B.x>2C.-1<x<2D.x<-1或x>2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知f(x)是定义在R上的偶函数,当x∈[0,+∞)时,f(x)=2x-2,则不等式f(log2x)>0的解集为(  )
A.$(0,\frac{1}{2})∪(2,+∞)$B.$(\frac{1}{2},1)∪(2,+∞)$C.(2,+∞)D.$(\frac{1}{2},1)$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知a>1,b>1,且$\frac{1}{4}lna,\frac{1}{4},lnb$成等比数列,则ab的最小值为e.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.计算定积分$\int_{-1}^1{|{x^2}-x|dx=}$1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.二次函数y=f(x)的图象上有三点A(-1,3),B(3,3),C(1,-1)
(1)求函数y=f(x)的解析式;
(2)写出函数y=f(x)的单调区间,并求其在区间[0,3]上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=|x-a|,g(x)=ax,(a∈R).
(1)若a=1,求方程f(x)=g(x)的解;
(2)若方程f(x)=g(x)有两解,求出实数a的取值范围;
(3)若a>0,记F(x)=g(x)f(x),试求函数y=F(x)在区间[1,2]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知复数z满足$\frac{1-z}{1+z}=i$,则|z|=(  )
A.1B.$\sqrt{2}$C.2D.$2\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,点P是△ABC外接圆圆O在C处的切线与割线AB的交点.
(1)若∠ACB=∠APC,求证:BC是圆O的直径;
(2)若D是圆O上一点,∠BPC=∠DAC,AC=$\sqrt{2}$,AB=2$\sqrt{2}$,PC=4,求CD的长.

查看答案和解析>>

同步练习册答案