精英家教网 > 高中数学 > 题目详情
已知双曲线C:
x2
2
-y2 =1

(1)求双曲线C的渐近线方程;
(2)已知点M的坐标为(0,1).设P是双曲线C上的点,Q是点P关于原点的对称点,记λ=
MP
MQ
.求λ的取值范围.
分析:(1)令双曲线方程的右边为0,化简即可得到双曲线的渐近线方程;
(2)用坐标表示向量,利用向量的数量积建立函数关系式,根据双曲线的范围,可求得λ的取值范围.
解答:解:(1)由双曲线C:
x2
2
-y2 =1

可得
x2
2
-y2 =0

解得所求渐近线方程为y-
2
2
x=0, y+
2
2
x=0

(2)设P的坐标为(x0,y0),则Q的坐标为(-x0,-y0),
λ=
MP
MQ
=(x0y0-1)•(-x0,-yo-1)
=-
x
2
0
-
y
2
0
+1=-
3
2
x
2
0
+2

|x0|≥
2

∴λ的取值范围是(-∞,-1].
点评:本题以双曲线为载体,考查双曲线的几何性质,考查向量的数量积,考查函数的值域,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线C:
x2
2
-y2=1

(1)求双曲线C的渐近线方程;
(2)已知点M的坐标为(0,1).设P是双曲线C上的点,Q是点P关于原点的对称点.记λ=
MP
MQ
.求λ的取值范围;
(3)已知点D,E,M的坐标分别为(-2,-1),(2,-1),(0,1),P为双曲线C上在第一象限内的点.记l为经过原点与点P的直线,s为△DEM截直线l所得线段的长.试将s表示为直线l的斜率k的函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线c:
x2
2
-y2=1
,设直线l过点A(-3
2
,0)

(1)当直线l与双曲线C的一条渐近线m平行时,求直线l的方程及l与m的距离;
(2)证明:当k>
2
2
时,在双曲线C的右支上不存在点Q,使之到直线l的距离为
6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C:
x2
2
-
y2
b2
=1(b>0)
的左右焦点分别为F1,F2,P,M为C上任意点,F1PF2=
π
2
S△PF1F2=1N(
3
2
,1)
,则
6
3
|MF2|+|MN|
的最小值为
 

查看答案和解析>>

科目:高中数学 来源:上海 题型:解答题

已知双曲线c:
x2
2
-y2=1
,设直线l过点A(-3
2
,0)

(1)当直线l与双曲线C的一条渐近线m平行时,求直线l的方程及l与m的距离;
(2)证明:当k>
2
2
时,在双曲线C的右支上不存在点Q,使之到直线l的距离为
6

查看答案和解析>>

同步练习册答案