4£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxoyÖУ¬ÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=1+\frac{{\sqrt{2}}}{2}t\\ y=-2+\frac{{\sqrt{2}}}{2}t\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÒÔ×ø±êÔ­µãOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖáµÄ¼«×ø±êϵÖУ¬ÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ¦Ñ2£¨1+sin2¦È£©=8£®
£¨1£©ÇóÇúÏßC1ºÍC2µÄÆÕͨ·½³Ì£»
£¨2£©ÈôÇúÏßC1ºÍC2½»ÓÚÁ½µãA£¬B£¬Çó|AB|µÄÖµ£®

·ÖÎö £¨1£©ÇúÏßC2µÄ¼«×ø±ê·½³Ìlת»¯Îª¦Ñ2+¦Ñ2sin2¦È=8£¬ÓÉ´ËÄÜÇó³öÇúÏßC2µÄÖ±½Ç×ø±ê·½³Ì£¬ÇúÏßC1µÄ²ÎÊý·½³ÌÏûÈ¥²ÎÊýt£¬ÄÜÇó³öÇúÏßC1µÄÆÕͨ·½³Ì£®
£¨2£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÁªÁ¢·½³Ì×é$\left\{\begin{array}{l}{y=x-3}\\{{x}^{2}+2{y}^{2}=8}\end{array}\right.$£¬µÃ3x2-12x+10=0£¬ÓÉ´ËÀûÓÃΤ´ï¶¨Àí¡¢ÏÒ³¤¹«Ê½ÄÜÇó³ö|AB|µÄÖµ£®

½â´ð ½â£º£¨1£©¡ßÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ¦Ñ2£¨1+sin2¦È£©=8£¬
¼´¦Ñ2+¦Ñ2sin2¦È=8£¬
¡àÇúÏßC2µÄÖ±½Ç×ø±ê·½³ÌΪx2+2y2=8£®
¡ßÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=1+\frac{{\sqrt{2}}}{2}t\\ y=-2+\frac{{\sqrt{2}}}{2}t\end{array}\right.$£¨tΪ²ÎÊý£©£¬
¡àÇúÏßC1ÏûÈ¥²ÎÊýt£¬µÃÇúÏßC1µÄÆÕͨ·½³ÌΪy=x-3£®
£¨2£©ÈôÇúÏßC1ºÍC2½»ÓÚÁ½µãA£¬B£¬ÔòÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
ÁªÁ¢·½³Ì×é$\left\{\begin{array}{l}{y=x-3}\\{{x}^{2}+2{y}^{2}=8}\end{array}\right.$£¬ÏûÈ¥y£¬µÃx2+2£¨x-3£©2=8£¬
ÕûÀí£¬µÃ3x2-12x+10=0£¬¡à$\left\{\begin{array}{l}{{x}_{1}+{x}_{2}=4}\\{{x}_{1}{x}_{2}=\frac{10}{3}}\end{array}\right.$£¬
¡à|AB|=$\sqrt{£¨1+{1}^{2}£©£¨{x}_{1}-{x}_{2}£©^{2}}$=$\sqrt{2}$•$\sqrt{£¨{x}_{1}+{x}_{2}£©^{2}-4{x}_{1}{x}_{2}}$=$\frac{4\sqrt{3}}{3}$£®

µãÆÀ ±¾Ì⿼²éÇúÏߵįÕͨ·½³ÌµÄÇ󷨣¬¿¼²éÏÒ³¤µÄÇ󷨣¬¿¼²éÖ±½Ç×ø±ê·½³Ì¡¢¼«×ø±ê·½³Ì¡¢²ÎÊý·½³ÌµÄ»¥»¯µÈ»ù´¡ÖªÊ¶£¬¿¼²éÍÆÀíÂÛÖ¤ÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦£¬¿¼²é»¯¹éÓëת»¯Ë¼Ï룬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®ÎÒ¹úµÄ¡¶ÂåÊé¡·ÖмÇÔØ×ÅÊÀ½çÉÏ×î¹ÅÀϵĻ÷½£º½«1£¬2£¬¡­£¬9ÌîÈë·½¸ñÄÚ£¬Ê¹ÈýÐС¢ÈýÁУ¬Á½Ìõ¶Ô½ÇÏßµÄÈý¸öÊýÖ®ºÍ¶¼µÈÓÚ15£¬ÈçͼËùʾ£®
Ò»°ãµØ£¬½«Á¬ÐøµÄÕýÕûÊý1£¬2£¬¡­£¬n2ÌîÈën¡Án¸ö·½¸ñÖУ¬Ê¹µÃÿÐУ¬Ã¿ÁС¢Ã¿Ìõ¶Ô½ÇÏßÉϵÄÊýµÄºÍÏàµÈ£¬Õâ¸öÕý·½ÐνÐ×ön½×»Ã·½£®¼Çn½×»Ã·½µÄ¶Ô½ÇÏßÉÏÊýµÄºÍΪNn£¬ÀýÈçN3=15£¬N4=34£¬N5=65¡­ÄÇôNn=$\frac{n£¨{n}^{2}+1£©}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®Èçͼ£¬ÔÚËıßÐÎABCDÖУ¬AB=BC=2£¬¡ÏABC=90¡ã£¬DA=DC=$\sqrt{6}$£®ÏÖÑØ¶Ô½ÇÏßACÕÛÆð£¬Ê¹µÃÆ½ÃæDAC¡ÍÆ½ÃæABC£¬´ËʱµãA£¬B£¬C£¬DÔÚͬһ¸öÇòÃæÉÏ£¬Ôò¸ÃÇòµÄÌå»ýÊÇ£¨¡¡¡¡£©
A£®$\frac{9}{2}¦Ð$B£®$\frac{{8\sqrt{2}}}{3}¦Ð$C£®$\frac{27}{2}¦Ð$D£®12¦Ð

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®½üÄêÀ´ÎÒ¹úµç×ÓÉÌÎñÐÐÒµÓ­À´Å·¢Õ¹µÄлúÓö£¬2016ÄêË«11ÆÚ¼ä£¬Ä³Æ½Ì¨µÄÏúÊÛÒµ¼¨¸ß´ï918ÒÚÈËÃñ±Ò£¬Óë´Ëͬʱ£¬Ïà¹Ø¹ÜÀí²¿ÃÅÒ²ÍÆ³öÁËÕë¶ÔµçÉ̵ÄÉÌÆ·ºÍ·þÎñÆÀ¼ÛÌåϵ£¬ÏÖ´ÓÆÀ¼ÛϵͳÖÐËæ»úÑ¡³ö200´Î³É¹¦µÄ½»Ò×£¬²¢¶ÔÆäÆÀ¼Û½á¹û½øÐÐͳ¼Æ£¬¶ÔÉÌÆ·µÄºÃÆÀÂÊΪ$\frac{3}{5}$£¬¶Ô·þÎñµÄºÃÆÀÂÊΪ$\frac{3}{4}$£¬ÆäÖжÔÉÌÆ·ºÍ·þÎñ¶¼×ö³öºÃÆÀµÄ½»Ò×Ϊ80´Î£®ÔÚ·¸´íÎó¸ÅÂʲ»³¬¹ý£¨¡¡¡¡£©µÄǰÌáÏ£¬ÈÏΪÉÌÆ·ºÃÆÀÓë·þÎñºÃÆÀÓйأ®
P£¨K2¡Ýk£©0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
A£®2.5%B£®1%C£®0.1%D£®97.5%

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÒÑÖªÍÖÔ²·½³ÌΪ$\frac{{x}^{2}}{4}$+y2=1£¬Ô²C£º£¨x-1£©2+y2=r2£®
£¨¢ñ£©ÇóÍÖÔ²É϶¯µãPÓëÔ²ÐÄC¾àÀëµÄ×îСֵ£»
£¨¢ò£©Èçͼ£¬Ö±ÏßlÓëÍÖÔ²ÏཻÓÚA¡¢BÁ½µã£¬ÇÒÓëÔ²CÏàÇÐÓÚµãM£¬ÈôÂú×ãMΪÏß¶ÎABÖеãµÄÖ±ÏßlÓÐ4Ìõ£¬Çó°ë¾¶rµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®ÇòºÍËüµÄÄÚ½ÓÕý·½ÌåµÄ±íÃæ»ýÖ®±ÈÊÇ$\frac{¦Ð}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®Èôf£¨x£©ÊǶ¨ÒåÔÚRÉϵĺ¯Êý£¬¶ÔÈÎÒâµÄʵÊýx¶¼ÓУºf£¨x+6£©¡Üf£¨x+2£©+4ºÍf£¨x+4£©¡Ýf£¨x+2£©+2£¬ÇÒf£¨1£©=1£¬Ôòf£¨2017£©=2017£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®ÒÑÖªP£¨K2¡Ý3.841£©¡Ö0.05£¬P£¨K2¡Ý5.024£©¡Ö0.025£®¸ù¾Ý±íÖÐÊý¾Ý£¬µÃµ½K2µÄ¹Û²âÖµk=$\frac{{50¡Á{{£¨13¡Á20-10¡Á7£©}^2}}}{23¡Á27¡Á20¡Á30}$¡Ö4.844£¬ÔòÓÐ95%µÄ°ÑÎÕÈÏΪѡÐÞÎÄ¿ÆÓëÐÔ±ðÓйأ®
Àí¿ÆÎĿƺϼÆ
ÄÐ131023
Ů72027
ºÏ¼Æ203050

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÒÑÖª¡°ÕûÊý¶Ô¡±°´ÈçϹæÂÉÅųÉÒ»ÁУº£¨0£¬0£©£¬£¨0£¬1£©£¬£¨1£¬0£©£¬£¨0£¬2£©£¬£¨1£¬1£©£¬£¨2£¬0£©£¬£¨0£¬3£©£¬£¨1£¬2£©£¬£¨2£¬1£©£¬£¨3£¬0£©£¬¡­£¬ÔòµÚ222¸ö¡°ÕûÊý¶Ô¡±ÊÇ£¨¡¡¡¡£©
A£®£¨10£¬10£©B£®£¨10£¬9£©C£®£¨11£¬9£©D£®£¨9£¬10£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸