精英家教网 > 高中数学 > 题目详情
已知点P(x,y)是双曲线
x2
a2
-
y2
b2
=1﹙a>0,b>0﹚上任意一点,F2(c,0)是双曲线的右焦点,求|PF2|的最小值及取得最小值时点P的坐标.
考点:双曲线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:据第二定义可得
|PF2|
x-
a2
x
=e
,可得|PF2|=ex-a,利用x≥a,即可求|PF2|的最小值及取得最小值时点P的坐标.
解答: 解:由题意,根据第二定义可得
|PF2|
x-
a2
x
=e

∴|PF2|=ex-a,
∵x≥a,
∴ex≥c,
∴|PF2|≥c-a,
即|PF2|的最小值为c-a,取得最小值时点P的坐标(a,0).
点评:本题考查双曲线的定义与性质,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知△ABC中,a=2,b=
2
,c=1,则cosB=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设xi∈N(i=1,2,3,4,5,6…),则满足x1<x2<x3<x4<10的有序数组(x1,x2,x3,x4)的个数为(  )
A、126B、3024
C、210D、5040

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是首项和公比均为
1
4
的等比数列,设bn+2=3log 
1
4
an(n∈N*).数列{cn}满足cn=an•bn
(Ⅰ)求证数列{bn}是等差数列;
(Ⅱ)求数列{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a∈R,函数f(x)=x2(x-a),若?x∈[1,2],使不等式f(x)<-1成立,求参数a.

查看答案和解析>>

科目:高中数学 来源: 题型:

若点A(1,2)是抛物线C:y2=2px(p>0)上一点,经过点B(5,-2)的直线l与抛物线C交于P,Q两点.
(Ⅰ)求证:
PA
QA
为定值;
(Ⅱ)若△APQ的面积为16
2
,求直线l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

化简:cos2
π
2
-α)-sin(α-2π)sin(π+α)-sin2(-α)

查看答案和解析>>

科目:高中数学 来源: 题型:

唐徕回中随机抽取部分新生调查其上学所需时间(单位:分钟),并将所得数据绘制成频率分布直方图,其中,上学所需时间的范围是[0,100],样本数据分组为[0,20),[20,40),[40,60),[60,80),[80,100],
(1)求直方图中的x的值;
(2)如果上学所需时间不少于1小时的学生可申请住校,请估计学校600名新生中有多少名学生可以申请住校;
(3)学校规定上学时间在[0,20)的学生只能步行,上学时间在[20,40)的学生只能骑自行车,现在用分层抽样方法从[0,20)和[20,40)中抽取6名学生,再从这6名学生中任意抽取两人,问这两人都骑自行车的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

据调查统计,通过这两条公路从城市甲到城市乙的200辆汽车所用时间的频数分布如下表.
(Ⅰ)为进行某项研究,从所用时间为12天的60辆汽车中随机抽取6辆.
(i)若用分层抽样的方法抽取,求从通过公路1和公路2的汽车中各抽取几辆;
(ii)若从(i)的条件下抽取的6辆汽车中,再任意抽取两辆汽车,求这两辆汽车至少有一辆通过公路1的概率.
所用的时间(天) 10 11 12 13
通过公路1的频数 20 40 20 20
通过公路2的频数 10 40 40 10
(Ⅱ)假设汽车A只能在约定日期(某月某日)的前11天出发,汽车B只能在约定日期的前12天出发.为了尽最大可能在各自允许的时间内将货物运往城市乙,估计汽车A和汽车B应如何选择各自的路径.

查看答案和解析>>

同步练习册答案