精英家教网 > 高中数学 > 题目详情

【题目】已知函数 (),将的图象上所有点的横坐标缩短到原来的(纵坐标不变),再将得到的图象上所有点向右平行移动个单位长度,得到的图象,则以下关于函数的结论正确的是(

A.的零点,则的整数倍

B.函数在区间上单调递增

C.是函数图象的对称中心

D.是函数图象的对称轴

【答案】D

【解析】

根据辅助角公式化简解析式,再根据三角函数平移变化可得函数的解析式:由正弦函数的周期性和零点定义可判断A,由正弦函数单调递增区间可判断B,由正弦函数的对称中心及对称轴可判断CD.

函数,由辅助角公式化简可得

的图象上所有点的横坐标缩短到原来的(纵坐标不变),再将得到的图象上所有点向右平行移动个单位长度,得到

对于A,函数的最小正周期为,若的零点,则的倍数,所以A错误;

对于B,由正弦函数的图象与性质可知,函数的单调递增区间为,解得

时,,而,所以函数在区间上不为单调递增,故B错误;

对于C,由正弦函数的图象与性质可知,函数的对称中心为,解得,当时,解得,不合题意,所以C错误;

对于D,由正弦函数的图象与性质可知,函数的对称轴满足,解得,当时,,故D正确.

综上所述,正确的为D

故选:D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】己知椭圆过点是两个焦点.以椭圆的上顶点为圆心作半径为的圆,

1)求椭圆的方程;

2)存在过原点的直线,与圆分别交于两点,与椭圆分别交于两点(点在线段上),使得,求圆半径的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图:在三棱锥中,平面平面ABC,且

1)若点DBP上的一动点,求证:

2)若,求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点是抛物线上的一点,其焦点为点,且抛物线在点处的切线交圆于不同的两点.

1)若点,求的值;

2)设点为弦的中点,焦点关于圆心的对称点为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,点为线段的中点,点为线段上靠近的三等分点.现沿进行翻折,得到四棱锥,如图2,且.在图2中:

1)求证:平面

2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当x[0π]时,f(x)≥0恒成立,求实数a的取值范围;(参考数据:sin1≈0.84)

2)当a=1时,数列{an}满足:0<an<1=f(an),求证:{an}是递减数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】按照水果市场的需要等因素,水果种植户把某种成熟后的水果按其直径的大小分为不同等级.某商家计划从该种植户那里购进一批这种水果销售.为了了解这种水果的质量等级情况,现随机抽取了100个这种水果,统计得到如下直径分布表(单位:mm):

d

等级

三级品

二级品

一级品

特级品

特级品

频数

1

m

29

n

7

用分层抽样的方法从其中的一级品和特级品共抽取6个,其中一级品2.

1)估计这批水果中特级品的比例;

2)已知样本中这批水果不按等级混装的话20个约1斤,该种植户有20000斤这种水果待售,商家提出两种收购方案:

方案A:以6.5/斤收购;

方案B:以级别分装收购,每袋20个,特级品8/袋,一级品5/袋,二级品4/袋,三级品3/.

用样本的频率分布估计总体分布,问哪个方案种植户的收益更高?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线为曲线上一动点,过作两条渐近线的垂线,垂足分别是.

1)当运动到时,求的值;

2)设直线(不与轴垂直)与曲线交于两点,与轴正半轴交于点,与轴交于点,若,且,求证为定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】的内角的对边分别为.

1)求

2)若上的点,平分,求的面积.

查看答案和解析>>

同步练习册答案