【题目】已知函数
(
),将
的图象上所有点的横坐标缩短到原来的
倍(纵坐标不变),再将得到的图象上所有点向右平行移动
个单位长度,得到
的图象,则以下关于函数
的结论正确的是( )
A.若
,
是
的零点,则
是
的整数倍
B.函数
在区间
上单调递增
C.点
是函数
图象的对称中心
D.
是函数
图象的对称轴
【答案】D
【解析】
根据辅助角公式化简
解析式,再根据三角函数平移变化可得函数
的解析式:由正弦函数的周期性和零点定义可判断A,由正弦函数单调递增区间可判断B,由正弦函数的对称中心及对称轴可判断C、D.
函数
,由辅助角公式化简可得
,
将
的图象上所有点的横坐标缩短到原来的
倍(纵坐标不变),再将得到的图象上所有点向右平行移动
个单位长度,得到
,
则
,
对于A,函数
的最小正周期为
,若
,
是
的零点,则
是
的倍数,所以A错误;
对于B,由正弦函数的图象与性质可知,函数
的单调递增区间为
,解得
,
当
时,
,而
,所以函数
在区间
上不为单调递增,故B错误;
对于C,由正弦函数的图象与性质可知,函数
的对称中心为
,解得
,当
时,解得
,不合题意,所以C错误;
对于D,由正弦函数的图象与性质可知,函数
的对称轴满足
,解得
,当
时,
,故D正确.
综上所述,正确的为D,
故选:D.
科目:高中数学 来源: 题型:
【题目】己知椭圆
过点
,
,
是两个焦点.以椭圆
的上顶点
为圆心作半径为
的圆,
(1)求椭圆
的方程;
(2)存在过原点的直线
,与圆
分别交于
,
两点,与椭圆
分别交于
,
两点(点
在线段
上),使得
,求圆
半径
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点
是抛物线
:
上的一点,其焦点为点
,且抛物线
在点
处的切线
交圆
:
于不同的两点
,
.
(1)若点
,求
的值;
(2)设点
为弦
的中点,焦点
关于圆心
的对称点为
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,
,点
为线段
的中点,点
为线段
上靠近
的三等分点.现沿
进行翻折,得到四棱锥
,如图2,且
.在图2中:
![]()
![]()
(1)求证:
平面
;
(2)求直线
与平面
所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数![]()
(1)当x∈[0,π]时,f(x)≥0恒成立,求实数a的取值范围;(参考数据:sin1≈0.84)
(2)当a=1时,数列{an}满足:0<an<1,
=f(an),求证:{an}是递减数列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】按照水果市场的需要等因素,水果种植户把某种成熟后的水果按其直径
的大小分为不同等级.某商家计划从该种植户那里购进一批这种水果销售.为了了解这种水果的质量等级情况,现随机抽取了100个这种水果,统计得到如下直径分布表(单位:mm):
d |
|
|
|
|
|
等级 | 三级品 | 二级品 | 一级品 | 特级品 | 特级品 |
频数 | 1 | m | 29 | n | 7 |
用分层抽样的方法从其中的一级品和特级品共抽取6个,其中一级品2个.
(1)估计这批水果中特级品的比例;
(2)已知样本中这批水果不按等级混装的话20个约1斤,该种植户有20000斤这种水果待售,商家提出两种收购方案:
方案A:以6.5元/斤收购;
方案B:以级别分装收购,每袋20个,特级品8元/袋,一级品5元/袋,二级品4元/袋,三级品3元/袋.
用样本的频率分布估计总体分布,问哪个方案种植户的收益更高?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线
,
为曲线
上一动点,过
作两条渐近线的垂线,垂足分别是
和
.
(1)当
运动到
时,求
的值;
(2)设直线
(不与
轴垂直)与曲线
交于
、
两点,与
轴正半轴交于
点,与
轴交于
点,若
,
,且
,求证
为定点.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com