精英家教网 > 高中数学 > 题目详情
已知tan(θ+
π
4
)=-3
,则sin2θ+sinθcosθ-2cos2θ=(  )
A、-
4
3
B、
5
4
C、-
3
4
D、
4
5
分析:先由tan(θ+
π
4
)=-3
求出tanθ的值,再将sin2θ+sinθcosθ-2cos2θ用tanθ表示出来,再代入tanθ的值,计算出结果,对照四个选项选出正确选项
解答:解:由题意tan(θ+
π
4
)=
1+tanθ
1-tanθ
=-3
,解得tanθ=2
sin2θ+sinθcosθ-2cos2θ=
sin2θ+sinθcosθ-2cos2θ
sin2θ+cos2θ
=
tan2θ+tanθ-2
tan2θ+1
=
4+2-2
4+1
=
4
5

故选D
点评:本题考查三角恒等变换及化简求值,解题的关键是将sin2θ+sinθcosθ-2cos2θ用tanθ表示出来,及由tan(θ+
π
4
)=-3
求出tanθ的值,用已知表示未知,求出未知,是本类型的题中常用的转化思路.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网(1)已知tan(α+
π
4
)=-3
,求
sinα(3cosα-sinα)
1+tanα
的值.
(2)如图:△ABC中,|
AC
|=2|
AB
|
,D在线段BC上,且
DC
=2
BD
,BM是中线,用向量证明AD⊥BM.(平面几何证明不得分)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tan(
π
4
+α)=2,tanβ=
1
2

(1)求tanα的值;
(2)求
sin(α+β)-2sinαcosβ
2sinαsinβ+cos(α+β)
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tan(α+
π
4
)=
1
7
,则tanα=
-
3
4
-
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tan(α+
π
4
)=2
,则
sinα+cosα
cosα-sinα
的值=
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tan(
π
4
+θ)=3
,则sin2θ-2cos2θ+1的值为
1
5
1
5

查看答案和解析>>

同步练习册答案