精英家教网 > 高中数学 > 题目详情

(本小题满分12分)已知函数
(Ⅰ) 若a =1,求函数的图像在点处的切线方程;
(Ⅱ)求的单调区间;
(Ⅲ)如果当时,恒成立,求实数的取值范围。

(Ⅰ);(Ⅱ)当时,增区间为
时,增区间为,增区间为
(Ⅲ)

解析试题分析:由题,
(Ⅰ)当 a =1时,
函数的图像在点处的切线方程为
(Ⅱ)设
①当时,增区间为
若设两根分别为
② 当时,,所以增区间为
③当时,,所以增区间为,增区间为
综上,当时,增区间为
时,增区间为,增区间为
(Ⅲ)可化为,设由(Ⅱ)可知:
①若有,由单调性,对此时,
同理,对此时,
所以符合题意;
②若有,可知则对此时,
不符合题意;
综上,符合题意的
考点:导数的几何意义;曲线的切线方程的求法;利用导数研究函数的单调性。
点评:①我们要灵活应用导数的几何意义求曲线的切线方程,尤其要注意切点这个特殊点,充分利用切点即在曲线方程上,又在切线方程上,切点处的导数等于切线的斜率这些条件列出方程组求解。②利用导数求函数的单调区间时,一定要先求函数的定义域。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分) 已知函数处有极值.
(Ⅰ)求实数值;
(Ⅱ)求函数的单调区间;
(Ⅲ)试问是否存在实数,使得不等式对任意 及
恒成立?若存在,求出的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)已知函数
(1)若,求函数在点(0,)处的切线方程;
(2)是否存在实数,使得的极大值为3.若存在,求出值;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)已知函数
(1) 求a的值;
(2) 证明的奇偶性;
(3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题9分)函数是定义在上的奇函数,当
(Ⅰ)求的值;
(Ⅱ)求的解析式。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,且
(1)若函数是偶函数,求的解析式;(3分)
(2)在(1)的条件下,求函数上的最大、最小值;(3分)
(3)要使函数上是单调函数,求的范围。(4分)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)已知函数
(1) 若,求函数的极值;
(2) 设函数,求函数的单调区间;
(3) 若在区间)上存在一点,使得成立,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知:
(1)用定义法证明函数上的增函数;
(2)是否存在实数使函数为奇函数?若存在,请求出的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(10分)证明为R上的单调递增函数

查看答案和解析>>

同步练习册答案