精英家教网 > 高中数学 > 题目详情
函数y=2011+loga(x+2012)(a>0,a≠1)的图象恒过定点
(-2011,2011)
(-2011,2011)
分析:令对数的真数等于1,求得x、y的值,即可求得函数的图象恒过定点的坐标.
解答:解:令x+2012=1,可得x=-2011,y=2011,
故函数y=2011+loga(x+2012)(a>0,a≠1)的图象恒过定点(-2011,2011),
故答案为 (-2011,2011).
点评:本题主要考查对数函数的单调性和特殊点,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•怀化一模)函数f(x)=ax+1+1(a>0且a≠1)的图象恒过定点A,且点A在直l:bx-y+2=0上,则直线l的方程是
y-2=0
y-2=0

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•江西模拟)已知函数f(x)=ax-lnx+1(a∈R),g(x)=xe1-x
(1)求函数g(x)在区间(0,e]上的值域;
(2)是否存在实数a,对任意给定的x0∈(0,e],在区间[1,e]上都存在两个不同的xi(i=1,2),使得f(xi)=g(x0)成立.若存在,求出a的取值范围;若不存在,请说明理由.
(3)给出如下定义:对于函数y=F(x)图象上任意不同的两点A(x1,y1),B(x2,y2),如果对于函数y=F(x)图象上的点M(x0,y0)(其中x0=
x1+x22
)
总能使得F(x1)-F(x2)=F'(x0)(x1-x2)成立,则称函数具备性质“L”,试判断函数f(x)是不是具备性质“L”,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•徐州模拟)如图,某新建小区有一片边长为1(单位:百米)的正方形剩余地块ABCD,中间部分MNK是一片池塘,池塘的边缘曲线段MN为函数y=
2
9x
(
1
3
≤x≤
2
3
)
的图象,另外的边缘是平行于正方形两边的直线段.为了美化该地块,计划修一条穿越该地块的直路(宽度不计),直路l与曲线段MN相切(切点记为P),并把该地块分为两部分.记点P到边AD距离为t,f(t)表示该地块在直路左下部分的面积.
(1)求f(t)的解析式;
(2)求面积S=f(t)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•顺义区二模)对于定义域分别为M,N的函数y=f(x),y=g(x),规定:
函数h(x)=
f(x)•g(x),当x∈M且x∈N
f(x),当x∈M且x∉N
g(x),当x∉M且x∈N

(1)若函数f(x)=
1
x+1
,g(x)=x2+2x+2,x∈R
,求函数h(x)的取值集合;
(2)若f(x)=1,g(x)=x2+2x+2,设bn为曲线y=h(x)在点(an,h(an))处切线的斜率;而{an}是等差数列,公差为1(n∈N*),点P1为直线l:2x-y+2=0与x轴的交点,点Pn的坐标为(an,bn).求证:
1
|P1P2|2
+
1
|P1P3|2
+…+
1
|P1Pn|2
2
5

(3)若g(x)=f(x+α),其中α是常数,且α∈[0,2π],请问,是否存在一个定义域为R的函数y=f(x)及一个α的值,使得h(x)=cosx,若存在请写出一个f(x)的解析式及一个α的值,若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•双流县三模)已知函数f(x)=x3-3x及y=f(x)上一点P(1,-2),过点P作直线l.
(1)求使直线l和y=f(x)相切且以P为切点的直线方程;
(2)求使直线l和y=f(x)相切且切点异于P的直线方程y=g(x);
(3)在(2)的条件下,求F(x)=f(x)+tg(x)(t为常数)在[2,+∞)上单调时,t的取值范围.

查看答案和解析>>

同步练习册答案