£¨2011•½­Î÷Ä£Ä⣩ÒÑÖªº¯Êýf£¨x£©=ax-lnx+1£¨a¡ÊR£©£¬g£¨x£©=xe1-x£®
£¨1£©Çóº¯Êýg£¨x£©ÔÚÇø¼ä£¨0£¬e]ÉϵÄÖµÓò£»
£¨2£©ÊÇ·ñ´æÔÚʵÊýa£¬¶ÔÈÎÒâ¸ø¶¨µÄx0¡Ê£¨0£¬e]£¬ÔÚÇø¼ä[1£¬e]É϶¼´æÔÚÁ½¸ö²»Í¬µÄxi£¨i=1£¬2£©£¬Ê¹µÃf£¨xi£©=g£¨x0£©³ÉÁ¢£®Èô´æÔÚ£¬Çó³öaµÄÈ¡Öµ·¶Î§£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
£¨3£©¸ø³öÈç϶¨Ò壺¶ÔÓÚº¯Êýy=F£¨x£©Í¼ÏóÉÏÈÎÒⲻͬµÄÁ½µãA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Èç¹û¶ÔÓÚº¯Êýy=F£¨x£©Í¼ÏóÉϵĵãM£¨x0£¬y0£©£¨ÆäÖÐx0=
x1+x22
)
×ÜÄÜʹµÃF£¨x1£©-F£¨x2£©=F'£¨x0£©£¨x1-x2£©³ÉÁ¢£¬Ôò³Æº¯Êý¾ß±¸ÐÔÖÊ¡°L¡±£¬ÊÔÅжϺ¯Êýf£¨x£©ÊDz»ÊǾ߱¸ÐÔÖÊ¡°L¡±£¬²¢ËµÃ÷ÀíÓÉ£®
·ÖÎö£º£¨1£©ÏÈÇ󵼺¯Êýg'£¨x£©=e1-x1xe1-x=ex-1£¨1-x£©£¬´Ó¶ø¿ÉÖªº¯ÊýÔÚÇø¼ä£¨0£¬1]Éϵ¥µ÷µÝÔö£¬ÔÚÇø¼ä[1£¬e£©Éϵ¥µ÷µÝ¼õ£¬Òò´Ë¿ÉÇóº¯ÊýµÄÖµÓò£®
£¨2£©Áîm=g£¨x£©£¬ÔòÓÉ£¨1£©¿ÉµÃm¡Ê£¨0£¬1]£¬Ô­ÎÊÌâµÈ¼ÛÓÚ£º¶ÔÈÎÒâµÄm¡Ê£¨0£¬1]£¬f£¨x£©=mÔÚ[1£¬e]ÉÏ×ÜÓÐÁ½¸ö²»Í¬µÄʵ¸ù£¬¹Êf£¨x£©ÔÚ[1£¬e]²»¿ÉÄÜÊǵ¥µ÷º¯Êý£¬´Ó¶ø¿ÉµÃa¡Ê(
1
e
£¬1)
£¬ÓÖf(x)min=f(
1
a
)=2+lna¡Ü0
¿ÉµÃa¡Ü
1
e2
£¬Ã¬¶Ü£¬Òò´ËÂú×ãÌõ¼þµÄa²»´æÔÚ
£¨3£©É躯Êýf£¨x£©¾ß±¸ÐÔÖÊ¡°L¡±£¬¼´ÔÚµãM´¦µØÇÐÏßбÂʵÈÓÚkAB£¬²»·ÁÉè0£¼x1£¼x2£¬Ò×µÃ
lnx1-lnx2
x1-x2
=
2
x1+x2
¼´ln
x1
x2
=
2(x1-x2)
x1+x2
=
2(
x1
x2
-1)
x1
x2
+1
£¬Áît=
x1
x2
¡Ê(0£¬1)
£¬ÔòÓÐlnt+
4
t+1
-2=0
£¬ÁîF£¨t£©=lnt+
4
t+1
-2
£¬ÔòÓÉF¡ä(t)=
1
t
-
4
(t+1)2
=
(t-1)2
t(t+1)
£¾0
¿ÉµÃF£¨t£©ÔÚ£¨0£¬1£©Éϵ¥µ÷µÝÔö£¬¹ÊF£¨t£©£¼F£¨1£©=0£¬´Ó¶ø·½³Ìlnt+
4
t+1
-2=0
Î޽⣬¹Ê¿ÉµÃÖ¤£®
½â´ð£º½â£º£¨1£©¡ßg'£¨x£©=e1-x1xe1-x=ex-1£¨1-x£©ÔÚÇø¼ä£¨0£¬1]Éϵ¥µ÷µÝÔö£¬ÔÚÇø¼ä[1£¬e£©Éϵ¥µ÷µÝ¼õ£¬ÇÒg£¨0£©=0£¬g£¨1£©=1£¾g£¨e£©=e2-eº¯Êýg£¨x£©ÔÚÇø¼ä£¨0£¬e]ÉϵÄÖµÓòΪ£¨0£¬1]¡­£®£¨3·Ö£©
£¨2£©Áîm=g£¨x£©£¬ÔòÓÉ£¨1£©¿ÉµÃm¡Ê£¨0£¬1]£¬Ô­ÎÊÌâµÈ¼ÛÓÚ£º¶ÔÈÎÒâµÄm¡Ê£¨0£¬1]f£¨x£©=mÔÚ[1£¬e]ÉÏ×ÜÓÐÁ½¸ö²»Í¬µÄʵ¸ù£¬¹Êf£¨x£©ÔÚ[1£¬e]²»¿ÉÄÜÊǵ¥µ÷º¯Êý                              ¡­£¨5·Ö£©¡ßf¡ä(x)=a-
1
x
(1¡Üx¡Üe)

µ±a¡Ü0ʱ£¬f¡ä(x)=a-
1
x
£¼0
£¬ÔÚÇø¼ä[1£¬e]Éϵݼõ£¬²»ºÏÌâÒâ
µ±a¡Ý1ʱ£¬f'£¨x£©£¾0£¬ÔÚÇø¼ä[1£¬e]Éϵ¥µ÷µÝÔö£¬²»ºÏÌâÒâ
µ±0£¼a¡Ü
1
e
ʱ£¬f'£¨x£©£¼0£¬ÔÚÇø¼ä[1£¬e]Éϵ¥µ÷µÝ¼õ£¬²»ºÏÌâÒâ
µ±1£¼
1
a
£¼e
¼´
1
e
£¼a£¼1
ʱ£¬ÔÚÇø¼ä[1£¬
1
a
]
Éϵ¥µ÷µÝ¼õ£»ÔÚÇø¼ä[
1
a
£¬e]
Éϵ¥µÝÔö£¬
ÓÉÉϿɵÃa¡Ê(
1
e
£¬1)
£¬´Ëʱ±ØÓÐf£¨x£©µÄ×îСֵСÓÚµÈÓÚ0ÇÒf£¨x£©µÄ×î´óÖµ´óÓÚµÈÓÚ1£¬¶øÓÉf(x)min=f(
1
a
)=2+lna¡Ü0
¿ÉµÃa¡Ü
1
e2
£¬Ôòa¡Ê¦µ
×ÛÉÏ£¬Âú×ãÌõ¼þµÄa²»´æÔÚ£®¡­..£¨8·Ö£©
£¨3£©É躯Êýf£¨x£©¾ß±¸ÐÔÖÊ¡°L¡±£¬¼´ÔÚµãM´¦µØÇÐÏßбÂʵÈÓÚkAB£¬²»·ÁÉè0£¼x1£¼x2£¬ÔòkAB=
y1-y2
x1-x2
=
a(x1-x2)-(lnx1-lnx2)
x1-x2
=a-
lnx1-lnx2
x1-x2
£¬¶øf£¨x£©ÔÚµãM´¦µÄÇÐÏßбÂÊΪf¡ä(x0)=f¡ä(
x1+x2
2
)=a-
2
x1+x2
£¬¹ÊÓÐ
lnx1-lnx2
x1-x2
=
2
x1+x2
¡­..£¨10·Ö£©
¼´ln
x1
x2
=
2(x1-x2)
x1+x2
=
2(
x1
x2
-1)
x1
x2
+1
£¬Áît=
x1
x2
¡Ê(0£¬1)
£¬ÔòÉÏʽ»¯Îªlnt+
4
t+1
-2=0
£¬
ÁîF£¨t£©=lnt+
4
t+1
-2
£¬ÔòÓÉF¡ä(t)=
1
t
-
4
(t+1)2
=
(t-1)2
t(t+1)
£¾0
¿ÉµÃF£¨t£©ÔÚ£¨0£¬1£©Éϵ¥µ÷µÝÔö£¬¹ÊF£¨t£©£¼F£¨1£©=0£¬¼´·½³Ìlnt+
4
t+1
-2=0
Î޽⣬ËùÒÔº¯Êýf£¨x£©²»¾ß±¸ÐÔÖÊ¡°L¡±£®¡­£¨14·Ö£©
µãÆÀ£º´ËÌâÊǸöÄÑÌ⣮¿¼²éÀûÓõ¼ÊýÑо¿º¯ÊýµÄµ¥µ÷ÐÔ£¬ºÍÇóº¯ÊýµÄ×îÖµÎÊÌ⣬ÌåÏÖÁË·ÖÀàÌÖÂÛºÍÊýÐνáºÏÒÔ¼°ÌâÒâµÄÀí½âÓëת»¯µÄ˼Ï룮ÌرðÊÇÎÊÌ⣨2£©µÄÉèÖ㬿¼²éÁËѧÉú´´ÔìÐÔ·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2011•½­Î÷Ä£Ä⣩ÔÚ¡÷ABCÖУ¬ÄÚ½ÇA£¬B£¬CµÄ¶Ô±ß·Ö±ðÊÇa£¬b£¬c£¬Èôa2-b2=
3
bc
£¬sinC=2
3
sinB
£¬ÔòA=£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2011•½­Î÷Ä£Ä⣩ÒÑÖªÊýÁÐ{an}£¬{bn}·Ö±ðÊǵȲµÈ±ÈÊýÁУ¬ÇÒa1=b1=1£¬a2=b2£¬a4=b3¡Ùb4£®
¢ÙÇóÊýÁÐ{an}£¬{bn}µÄͨÏʽ£»
¢ÚÉèSnΪÊýÁÐ{an}µÄÇ°nÏîºÍ£¬Çó{
1
Sn
}µÄÇ°nÏîºÍTn£»
¢ÛÉèCn=
anbn
Sn+1
£¨n¡ÊN£©£¬Rn=C1+C2+¡­+Cn£¬ÇóRn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2011•½­Î÷Ä£Ä⣩ÒÑÖªÊýÁÐ{an}Âú×ãan+1=
2an
an+2
£¨n¡ÊN*£©£¬a2011=
1
2011
£®
£¨1£©Çó{an}µÄͨÏʽ£»
£¨2£©Èôbn=
4
an
-4023
ÇÒcn=
b
2
n+1
+
b
2
n
2bn+1bn
(n¡ÊN*)
£¬ÇóÖ¤£ºc1+c2+¡­+cn£¼n+1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2011•½­Î÷Ä£Ä⣩Éèa¡ÊR£¬f(x)=cosx(asinx-cosx)+cos2(
¦Ð
2
-x)
Âú×ãf(-
¦Ð
3
)=f(0)
£¬
£¨¢ñ£©Çóº¯Êýf£¨x£©µÄµ¥µ÷µÝÔöÇø¼ä£»
£¨¢ò£©Éè¡÷ABCÈýÄÚ½ÇA£¬B£¬CËù¶Ô±ß·Ö±ðΪa£¬b£¬cÇÒ
a2+c2-b2
a2+b2-c2
=
c
2a-c
£¬Çóf£¨x£©ÔÚ£¨0£¬B]ÉϵÄÖµÓò£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸