精英家教网 > 高中数学 > 题目详情
不等式|sinx+tanx|<a的解集为N;不等式|sinx|+|tanx|<a的解集为M;则解集M与N的关系是(    )

A.NM                       B.MN

C.M=N                        D.MN

思路解析:|sinx+tanx|≤|sinx|+|tanx|,

则MN(当a≤0时,M=N=),故选B.

答案:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于函数f1(x),f2(x),h(x),如果存在实数a,b使得h(x)=a•f1(x)+b•f2(x),那么称h(x)为f1(x),f2(x)的生成函数.
(Ⅰ)下面给出两组函数,h(x)是否分别为f1(x),f2(x)的生成函数?并说明理由;
    第一组:f1(x)=sinx,  f2(x)=cosx,  h(x)=sin(x+
π
3
)

    第二组:f1(x)=x2-x,f2(x)=x2+x+1,h(x)=x2-x+1;
(Ⅱ)设f1(x)=log2x,  f2(x)=log
1
2
x,  a=2,  b=1
,生成函数h(x).若不等式3h2(x)+2h(x)+t<0在x∈[2,4]上有解,求实数t的取值范围;
(Ⅲ)设f1(x)=x,   f2(x)=
1
x
   (1≤x≤10)
,取a=1,b>0,生成函数h(x)使h(x)≥b恒成立,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

12、已若不等式t2-2at+1≥sinx对一切x∈[-π,π]及a∈[-1,1]都成立,则t的取值范围是
t≥2或t≤-2或t=0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:在函数f(x)=mx3-x的图象上,以N(1,n)为切点的切线的倾斜角为
π
4

(1)求m,n的值;
(2)是否存在最小的正整数k,使得不等式f(x)≤k-1993对于x∈[-1,3]恒成立?如果存在,请求出最小的正整数k;如果不存在,请说明理由;
(3)求证:|f(sinx)+f(cosx)|≤2f(t+
1
2t
)
(x∈R,t>0).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•湖北模拟)已知函数f(x)=sinx+cos(x+t)为偶函数,且t满足不等式t2-3t-40<0,则t的值为
-
2
π
2
2
-
2
π
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•浦东新区一模)对于函数f1(x),f2(x),h(x),如果存在实数a,b使得h(x)=a•f1(x)+b•f2(x),那么称h(x)为f1(x),f2(x)的生成函数.
(1)下面给出两组函数,h(x)是否分别为f1(x),f2(x)的生成函数?并说明理由.
第一组:f1(x)=sinx,f2(x)=cosx,h(x)=sin(x+
π
3
)

第二组:f1(x)=x2-x,f2(x)=x2+x+1,h(x)=x2-x+1.
(2)设f1(x)=log2x,f2(x)=log
1
2
x,a=2,b=1
,生成函数h(x).若不等式h(4x)+t•h(2x)<0在x∈[2,4]上有解,求实数t的取值范围.
(3)设f1(x)=x(x>0),f2(x)=
1
x
(x>0)
,取a>0,b>0生成函数h(x)图象的最低点坐标为(2,8).若对于任意正实数x1,x2且x1+x2=1,试问是否存在最大的常数m,使h(x1)h(x2)≥m恒成立?如果存在,求出这个m的值;如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案