已知函数,曲线在点处的切线是:
(Ⅰ)求,的值;
(Ⅱ)若在上单调递增,求的取值范围
(Ⅰ) ,;(Ⅱ)
解析试题分析:(Ⅰ)先求出已知函数的导函数,根据切线方程就可以知道曲线在的函数值和切线斜率,代入函数以及其导函数的解析式求解;(Ⅱ)先由(Ⅰ)得到函数及其导函数的只含有一个参数的解析式,然后根据导数与函数单调性的关系将问题转化为在上的恒成立问题,进行分类讨论解不等式即可
试题解析:解:(Ⅰ) 由已知得, 2分
因为曲线在点处的切线是:,
所以,,即, 6分
(Ⅱ)由(Ⅰ)知,,
因为在上单调递增,所以在上恒成立 8分
当时,在上单调递增,
又因为,所以在上恒成立 10分
当时,要使得在上恒成立,那么,
解得 12分
综上可知, 14分
考点:1、利用导数研究函数的切线方程;2、函数的单调性与导数的关系3、分类讨论思想
科目:高中数学 来源: 题型:解答题
已知函数,其中是自然对数的底数,.
(1)若,求曲线在点处的切线方程;
(2)若,求的单调区间;
(3)若,函数的图象与函数的图象有3个不同的交点,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数的导函数是二次函数,当时,有极值,且极大值为2,.
(1)求函数的解析式;
(2)有两个零点,求实数的取值范围;
(3)设函数,若存在实数,使得,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设函数f(x)=+ax-lnx(a∈R).
(Ⅰ)当a=1时,求函数f(x)的极值;
(Ⅱ)当a≥2时,讨论函数f(x)的单调性;
(Ⅲ)若对任意及任意,∈[1,2],恒有成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知
(1)若时,求函数在点处的切线方程;
(2)若函数在上是减函数,求实数的取值范围;
(3)令是否存在实数,当是自然对数的底)时,函数的最小值是3,
若存在,求出的值;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com