精英家教网 > 高中数学 > 题目详情

已知函数,曲线在点处的切线是 
(Ⅰ)求的值;
(Ⅱ)若上单调递增,求的取值范围

(Ⅰ) ;(Ⅱ) 

解析试题分析:(Ⅰ)先求出已知函数的导函数,根据切线方程就可以知道曲线在的函数值和切线斜率,代入函数以及其导函数的解析式求解;(Ⅱ)先由(Ⅰ)得到函数及其导函数的只含有一个参数的解析式,然后根据导数与函数单调性的关系将问题转化为上的恒成立问题,进行分类讨论解不等式即可
试题解析:解:(Ⅰ) 由已知得,                     2分
因为曲线在点处的切线是,
所以,即                   6分
(Ⅱ)由(Ⅰ)知
因为上单调递增,所以上恒成立                  8分
时,上单调递增,
又因为,所以上恒成立               10分
时,要使得上恒成立,那么
解得                                12分
综上可知,                               14分
考点:1、利用导数研究函数的切线方程;2、函数的单调性与导数的关系3、分类讨论思想

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数,其中是自然对数的底数,
(1)若,求曲线在点处的切线方程;
(2)若,求的单调区间;
(3)若,函数的图象与函数的图象有3个不同的交点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)当时,求曲线在点处的切线方程;
(Ⅱ)若在区间上是减函数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数 .
(1)若 的极小值为1,求a的值.
(2)若对任意 ,都有 成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的导函数是二次函数,当时,有极值,且极大值为2,.
(1)求函数的解析式;
(2)有两个零点,求实数的取值范围;
(3)设函数,若存在实数,使得,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)=+ax-lnx(a∈R).
(Ⅰ)当a=1时,求函数f(x)的极值;
(Ⅱ)当a≥2时,讨论函数f(x)的单调性;
(Ⅲ)若对任意及任意∈[1,2],恒有成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数为正常数.
(Ⅰ)若,且,求函数的单调增区间;
(Ⅱ)若,且对任意都有,求的的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知
(1)若时,求函数在点处的切线方程;
(2)若函数上是减函数,求实数的取值范围;
(3)令是否存在实数,当是自然对数的底)时,函数的最小值是3,
若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,求函数的单调区间;
(Ⅱ)当时,不等式恒成立,求实数的取值范围.
(Ⅲ)求证:,e是自然对数的底数).
提示:

查看答案和解析>>

同步练习册答案