精英家教网 > 高中数学 > 题目详情

已知函数
(Ⅰ)当时,求曲线在点处的切线方程;
(Ⅱ)若在区间上是减函数,求的取值范围.

(Ⅰ);(Ⅱ)

解析试题分析:(Ⅰ)当时,,由导数的几何意义,先求,再利用点斜式求切线方程;(Ⅱ)先求得.令,得.再分讨论,列不等式组求的范围.
试题解析:(Ⅰ)当时,,         1分
,所以.             2分
,所以所求切线方程为 ,即.所以曲线在点处的切线方程为.            5分
(Ⅱ)方法一:因为,令,得.   6分
时,恒成立,不符合题意.            7分
时,的单调递减区间是,若在区间上是减函数,
解得.                9分
时,的单调递减区间是,若在区间上是减函数,则,解得.                     11分
综上所述,实数的取值范围是.           12分
(Ⅱ)方法二:.             6分
因为在区间上是减函数,所以恒成立.       7分
因此                  9分
                 11分
故实数的取值范围.              12分
考点:1.导数的几何意义;2.利用导数研究函数的单调性.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数,其中是自然对数的底数.
(Ⅰ)求函数的单调区间和极值;
(Ⅱ)若函数对任意满足,求证:当时,
(Ⅲ)若,且,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的极值点;
(2)若直线过点,并且与曲线相切,求直线的方程;
(3)设函数,其中,求函数上的最小值(其中为自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,
⑴求证函数上的单调递增;
⑵函数有三个零点,求的值;
⑶对恒成立,求a的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,试讨论函数的单调性;
(2)证明:对任意的 ,有.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)当时,求的单调区间;
(2)当,且时,求在区间上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=x2-mlnx
(1)若函数f(x)在(,+∞)上是递增的,求实数m的取值范围;
(2)当m=2时,求函数f(x)在[1,e]上的最大值和最小值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,曲线在点处的切线是 
(Ⅰ)求的值;
(Ⅱ)若上单调递增,求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数是定义在上的奇函数,当时, (其中e是自然界对数的底,)
(Ⅰ)设,求证:当时,
(Ⅱ)是否存在实数a,使得当时,的最小值是3 ?如果存在,求出实数a的值;如果不存在,请说明理由。

查看答案和解析>>

同步练习册答案