精英家教网 > 高中数学 > 题目详情

已知函数
(1)求函数的极值点;
(2)若直线过点,并且与曲线相切,求直线的方程;
(3)设函数,其中,求函数上的最小值(其中为自然对数的底数).

(1)是函数的极小值点,极大值点不存在;(2);(3)当时,的最小值为0;当时,的最小值为;当时,的最小值为.

解析试题分析:(1)先求函数的定义域,再按用导数法求极值的步骤求解;(2)设切点的坐标,用点斜式写出切线的方程,由点在切线上求出切点的横坐标,从而求得切线的方程;(3).
试题解析:(1),令,则.
,故是函数的极小值点,极大值点不存在.
(2)由直线过点,并且与曲线相切,而不在的图象上,
设切点为直线的斜率,方程为
在直线上,,解得
故直线的方程为.
(3)依题意,,令,则
所以当单调递减;单调递增;
,所以①当,即时,的极小值为;②当,即时,的极小值为;③当,即时,的极小值为.
故①当时,的最小值为0;②当时,的最小值为;③当时,的最小值为.
考点:用导数法求函数的极值,最值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

,函数.
(1)若,求曲线在点处的切线方程;
(2)求函数的单调区间;
(3)当时,求函数上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

.
(1)请写出的表达式(不需证明);
(2)求的极小值;
(3)设的最大值为的最小值为,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中是自然对数的底数,
(1)若,求曲线在点处的切线方程;
(2)若,求的单调区间;
(3)若,函数的图象与函数的图象有3个不同的交点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,求函数上的极值;
(2)证明:当时,
(3)证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的图象经过两点,如图所示,且函数的值域为.过该函数图象上的动点轴的垂线,垂足为,连接.

(I)求函数的解析式;
(Ⅱ)记的面积为,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求的最大值;
(2)若对,总存在使得成立,求的取值范围;
(3)证明不等式:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)当时,求曲线在点处的切线方程;
(Ⅱ)若在区间上是减函数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数为正常数.
(Ⅰ)若,且,求函数的单调增区间;
(Ⅱ)若,且对任意都有,求的的取值范围.

查看答案和解析>>

同步练习册答案