精英家教网 > 高中数学 > 题目详情

.
(1)请写出的表达式(不需证明);
(2)求的极小值;
(3)设的最大值为的最小值为,求的最小值.

(1);(2);(3).

解析试题分析: (1)依次求出,,,
由此便可猜测出的表达式.
(2)要求的极小值,先求出
可得的单调区间和极值.
(3)配方法可以求出.
由(2)得:,所以.
问题转化为求的最小值.这又有两种方法:
法一、构造函数,通过求导来求它的最小值;法二、通过研究这个数列的单调性来求它的最小值.
试题解析:(1)根据,,,
猜测出的表达式.           4分
(2)求导得:
因为时,;当时,.
所以,当时,取得极小值
.                                8分
(3)将配方得
所以.
又因为,所以,      10分
问题转化为求的最小值.
解法1(构造函数):

,又在区间上单调递增,
所以
又因为
所以存在使得
又有在区间上单调递增,所以时,
时,
在区间上单调递增,在区间上单调递减,
所以
又由于
所以当时,取得最小值
解法2(利用数列的单调性):
因为
时,
所以,所以.
又因为.
所以当时,取得最小值.      &nbs

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设二次函数的图像过原点,的导函数为,且
(1)求函数的解析式;
(2)求的极小值;
(3)是否存在实常数,使得若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)当时,求曲线在点处的切线方程;
(Ⅱ)求的单调区间;
(Ⅲ)若函数没有零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中是自然对数的底数.
(Ⅰ)求函数的单调区间和极值;
(Ⅱ)若函数对任意满足,求证:当时,
(Ⅲ)若,且,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)若,求函数的单调区间并比较的大小关系
(Ⅱ)若函数的图象在点处的切线的倾斜角为,对于任意的,函数在区间上总不是单调函数,求的取值范围;
(Ⅲ)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若函数在点处的切线方程为,求的值;
(2)若,函数在区间内有唯一零点,求的取值范围;
(3)若对任意的,均有,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数,其中.
(1)若处取得极值,求常数的值;
(2)设集合,若元素中有唯一的整数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的极值点;
(2)若直线过点,并且与曲线相切,求直线的方程;
(3)设函数,其中,求函数上的最小值(其中为自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=x2-mlnx
(1)若函数f(x)在(,+∞)上是递增的,求实数m的取值范围;
(2)当m=2时,求函数f(x)在[1,e]上的最大值和最小值

查看答案和解析>>

同步练习册答案