已知函数f(x)=x2-mlnx
(1)若函数f(x)在(,+∞)上是递增的,求实数m的取值范围;
(2)当m=2时,求函数f(x)在[1,e]上的最大值和最小值
(1);(2)
解析试题分析:(1)主要利用函数在区间上的单调递增转化为导数在该区间上恒大于零,然后再把恒成立问题转化为最值来求;(2)利用导数分析函数在区间上的单调性,然后求对应的最值;
试题解析:(1)若函数f(x)在(,+∞)上是增函数,
则f′(x)≥0在(,+∞)上恒成立 2分
而f′(x)=x-,即m≤x2在(,+∞)上恒成立,即m≤ 8分
(2)当m=2时,f′(x)=x-=,
令f′(x)=0得x=±, 10分
当x∈[1,)时,f′(x)<0,当x∈(,e)时,f′(x)>0,
故x=是函数f(x)在[1,e]上唯一的极小值点,
故f(x)min=f()=1-ln2,
又f(1)=,f(e)=e2-2=>,故f(x)max= 16分
考点:导数、函数单调性,函数的最值
科目:高中数学 来源: 题型:解答题
已知函数.
(Ⅰ)求函数的单调区间;
(Ⅱ)如果对于任意的,总成立,求实数的取值范围;
(Ⅲ)设函数,,过点作函数图象的所有切线,令各切点得横坐标构成数列,求数列的所有项之和的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数的导函数是二次函数,当时,有极值,且极大值为2,.
(1)求函数的解析式;
(2)有两个零点,求实数的取值范围;
(3)设函数,若存在实数,使得,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
预计某地区明年从年初开始的前个月内,对某种商品的需求总量 (万件)近似满足:N*,且)
(1)写出明年第个月的需求量(万件)与月份 的函数关系式,并求出哪个月份的需求量超过万件;
(2)如果将该商品每月都投放到该地区万件(不包含积压商品),要保证每月都满足供应, 应至少为多少万件?(积压商品转入下月继续销售)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com