精英家教网 > 高中数学 > 题目详情

已知函数为正常数.
(Ⅰ)若,且,求函数的单调增区间;
(Ⅱ)若,且对任意都有,求的的取值范围.

(Ⅰ);(Ⅱ).

解析试题分析:(Ⅰ) 利用导数求解单调区间,导数大于零,原函数单调递增,然后解不等式;(Ⅱ)利用导数研究单调性,进而求最值.
试题解析:(Ⅰ)
,令,得,或, 
∴函数的单调增区间为.
(Ⅱ) ∵,∴,∴
,   依题意上是减函数.
时,
,得:恒成立,
,则
,∴
上是增函数,则当时,有最大值为,∴. 10分
时,
,得:
,则
上是增函数,  ∴,     ∴
综上所述,.
考点:导数,函数的单调性,不等式证明等知识点,考查学生的综合处理能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的极值点;
(2)若直线过点,并且与曲线相切,求直线的方程;
(3)设函数,其中,求函数上的最小值(其中为自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=x2-mlnx
(1)若函数f(x)在(,+∞)上是递增的,求实数m的取值范围;
(2)当m=2时,求函数f(x)在[1,e]上的最大值和最小值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,曲线在点处的切线是 
(Ⅰ)求的值;
(Ⅱ)若上单调递增,求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分共12分)已知函数,曲线在点处切线方程为
(Ⅰ)求的值;
(Ⅱ)讨论的单调性,并求的极大值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,设曲线在与轴交点处的切线为的导函数,满足
(1)求
(2)设,求函数上的最大值;
(3)设,若对于一切,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)若对任意,使得恒成立,求实数的取值范围;
(Ⅱ)证明:对,不等式成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数是定义在上的奇函数,当时, (其中e是自然界对数的底,)
(Ⅰ)设,求证:当时,
(Ⅱ)是否存在实数a,使得当时,的最小值是3 ?如果存在,求出实数a的值;如果不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数的定义域为(0,).
(Ⅰ)求函数上的最小值;
(Ⅱ)设函数,如果,且,证明:.

查看答案和解析>>

同步练习册答案