精英家教网 > 高中数学 > 题目详情

已知函数.
(Ⅰ)当时,求的单调区间;
(2)当,且时,求在区间上的最大值.

(Ⅰ)的单调递减区间;(Ⅱ)在区间上的最大值为 .

解析试题分析:(Ⅰ)当时,求的单调区间,只需求出的导函数,判断的导函数的符号,从而求出的单调区间;(Ⅱ)当,且时,求在区间上的最大值,此题属于函数在闭区间上的最值问题,解此类题,只需求出极值,与端点处的函数值,比较谁大,就取谁,但此题,令,得,需对讨论,由于,分,与,两种情况讨论,从而确定最大值,本题思路简单,运算较繁,特别是分类讨论,是学生的薄弱点.
试题解析:(Ⅰ)当时,,则,令,解得,当时,有; 当时,有,所以的单调递增区间的单调递减区间
(Ⅱ)当,且时,,则, 令,得,①当,即时,此时当时,有,所以上为减函数,当时,有,所以上为增函数,又
所以的最大值为;②当,即时,此时当时,;当时,;当时,;所以上为增函数,在上为减函数,在上为增函数, , 所以的最大值为,综上,在区间上的最大值为 .
考点:函数与导数,导数与函数的单调性、导数与函数的极值及最值,考查学生的基本推理能力,考查学生的基本运算能力以及转化与化归的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数为实数)有极值,且在处的切线与直线平行.
(Ⅰ)求实数a的取值范围;
(Ⅱ)是否存在实数a,使得函数的极小值为1,若存在,求出实数a的值;若不存在,请说明理由;
(Ⅲ)设函数试判断函数上的符号,并证明:
).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的图象经过两点,如图所示,且函数的值域为.过该函数图象上的动点轴的垂线,垂足为,连接.

(I)求函数的解析式;
(Ⅱ)记的面积为,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若曲线在点处的切线平行于轴,求的值;
(2)当时,若直线与曲线上有公共点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)当时,求曲线在点处的切线方程;
(Ⅱ)若在区间上是减函数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)判断函数的奇偶性;
(2)求函数的单调区间;
(3)若关于的方程有实数解,求实数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数 .
(1)若 的极小值为1,求a的值.
(2)若对任意 ,都有 成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)=+ax-lnx(a∈R).
(Ⅰ)当a=1时,求函数f(x)的极值;
(Ⅱ)当a≥2时,讨论函数f(x)的单调性;
(Ⅲ)若对任意及任意∈[1,2],恒有成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数(其中).
(1) 当时,求函数的单调区间和极值;
(2) 当时,函数上有且只有一个零点.

查看答案和解析>>

同步练习册答案