精英家教网 > 高中数学 > 题目详情
如图所示:已知过抛物线的焦点F的直线与抛物线相交于A,B两点。

(1)求证:以AF为直径的圆与x轴相切;
(2)设抛物线在A,B两点处的切线的交点为M,若点M的横坐标为2,求△ABM的外接圆方程;
(3)设过抛物线焦点F的直线与椭圆的交点为C、D,是否存在直线使得,若存在,求出直线的方程,若不存在,请说明理由。
(1)根据题意只要证明∴以线段AF为直径的圆与x轴相切
(2)
(3)

试题分析:(1)解法一(几何法)设线段AF中点为,过垂直于x轴,垂足为,则
 ,     2分
又∵,       3分
∴以线段AF为直径的圆与x轴相切。     4分 
解法二(代数法)设,线段AF中点为,过垂直于x轴,
垂足为,则
.      2分
又∵点为线段AF的中点,∴,     3分

∴以线段AF为直径的圆与x轴相切。     4分

(2)设直线AB的方程为
 ,
.     5分

     6分
,故的外接圆圆心为线段的中点。
设线段AB中点为点P,易证⊙P与抛物线的准线相切,切点为点M ,
.  7分
 8分

 .     9分
(3),设,10分
 ,设,则
       11分
代入可得: . ①     12分

联立可得,②     13分
联立①②可得 ,解得
。      14分
点评:主要是考查了直线与椭圆的位置关系的运用,属于中档题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知在直角坐标系中,曲线的参数方程为:为参数),在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,直线的极坐标方程为:
(Ⅰ)写出曲线和直线在直角坐标系下的方程;
(II)设点是曲线上的一个动点,求它到直线的距离的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是双曲线与圆的一个交点,且,其中分别为双曲线C1的左右焦点,则双曲线的离心率为(     )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(13分)已知椭圆C:(a>b>0)的两个焦点分别为F1(﹣1,0),F2(1,0),且椭圆C经过点
(I)求椭圆C的离心率:
(II)设过点A(0,2)的直线l与椭圆C交于M,N两点,点Q是线段MN上的点,且,求点Q的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线C:与椭圆共焦点,

(Ⅰ)求的值和抛物线C的准线方程;
(Ⅱ)若P为抛物线C上位于轴下方的一点,直线是抛物线C在点P处的切线,问是否存在平行于的直线与抛物线C交于不同的两点A,B,且使?若存在,求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线与平面平行,P是直线上的一定点,平面内的动点B满足:PB与直线 。那么B点轨迹是 (    )                          
A.椭圆B.双曲线C.抛物线D.两直线

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知抛物线的准线过双曲线的右焦点,则双曲线的离心率为     .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

到图形上每一个点的距离的最小值称为点到图形的距离,那么平面内到定圆的距离与到定点的距离相等的点的轨迹不可能是(   )
A.圆B.椭圆C.双曲线的一支D.直线

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,椭圆的右焦点与抛物线的焦点重合,过作与轴垂直的直线与椭圆交于S、T两点,与抛物线交于C、D两点,且

(Ⅰ)求椭圆的方程;
(Ⅱ)若过点的直线与椭圆相交于两点,设为椭圆上一点,且满足为坐标原点),当时,求实数的取值范围.

查看答案和解析>>

同步练习册答案