精英家教网 > 高中数学 > 题目详情
已知在直角坐标系中,曲线的参数方程为:为参数),在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,直线的极坐标方程为:
(Ⅰ)写出曲线和直线在直角坐标系下的方程;
(II)设点是曲线上的一个动点,求它到直线的距离的最小值.
(Ⅰ);(II)

试题分析:(Ⅰ)利用转化公式参数方程、极坐标方程为直角坐标方程;(II)利用点到直线距离公式得点它到直线的距离的函数关系式,最后利用函数求最值.
试题解析:(Ⅰ)
所以曲线在直角坐标系下的标准方程是   

故直线在直角坐标系下的标准方程是
(II)设,于是点到直线的距离为
   
  

时取等号,此时
所以点到直线的距离的最小值为
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在直角坐标系上取两个定点,再取两个动点
(I)求直线交点的轨迹的方程;
(II)已知,设直线:与(I)中的轨迹交于两点,直线 的倾斜角分别为,求证:直线过定点,并求该定点的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆的离心率为,且椭圆的右焦点与抛物线的焦点重合.

(Ⅰ)求椭圆的标准方程;
(Ⅱ)如图,设直线与椭圆交于两点(其中点在第一象限),且直线与定直线交于点,过作直线轴于点,试判断直线与椭圆的公共点个数.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知焦点在轴上的椭圆和双曲线的离心率互为倒数,它们在第一象限交点的坐标为,设直线(其中为整数).
(1)试求椭圆和双曲线的标准方程;
(2)若直线与椭圆交于不同两点,与双曲线交于不同两点,问是否存在直线,使得向量,若存在,指出这样的直线有多少条?若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过抛物线的焦点F作一直线l交抛物线于A、B两点,以AB为直径的圆与该抛物线的准线l的位置关系为(     )
A. 相交 B. 相离 C. 相切 D. 不能确定

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设圆和圆是两个定圆,动圆P与这两个定圆都相切,则圆P的圆心轨迹可能是(   )

              
①              ②           ③              ④            ⑤
A.①③⑤B.②④⑤C.①②④D.①②③

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

双曲线的离心率为(     )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示:已知过抛物线的焦点F的直线与抛物线相交于A,B两点。

(1)求证:以AF为直径的圆与x轴相切;
(2)设抛物线在A,B两点处的切线的交点为M,若点M的横坐标为2,求△ABM的外接圆方程;
(3)设过抛物线焦点F的直线与椭圆的交点为C、D,是否存在直线使得,若存在,求出直线的方程,若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆 若直线则该椭圆的离心率等于      .

查看答案和解析>>

同步练习册答案