分析 (1)由等差数列的性质可得2ccosA=acosC+b,结合余弦定理,化简即可得解.
(2)由等差数列的性质可得2ccosA=acosC+b,利用正弦定理及三角函数恒等变换的应用化简可得tanC=2tanA=1,利用正弦定理即可得解.
解答 解:(1)∵b,ccosA,acosC成等差数列,
∴2ccosA=acosC+b,
∴2c•$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=a•$\frac{{b}^{2}+{a}^{2}-{c}^{2}}{2ab}$+b
∴3(c2-a2)=b2,可得:$\frac{{c}^{2}-{a}^{2}}{{b}^{2}}$=$\frac{1}{3}$,
(2)∵b,ccosA,acosC成等差数列,
∴2ccosA=acosC+b,
⇒2sinCcosA=sinAcosC+sinB=sinAcosC+sin(A+C)
⇒2sinCcosA=sinAcosC+sinAcosC+cosAsinC
⇒sinCcosA=2sinAcosC
⇒tanC=2tanA=1,
$\begin{array}{l}又sinA=\frac{{\sqrt{5}}}{5},sinC=\frac{{\sqrt{2}}}{2},\\∴由\frac{a}{sinA}=\frac{c}{sinC}得a=\frac{csinA}{sinC}=\sqrt{2}.\end{array}$
注:第(2)问可对角A用余弦定理再得三边一等量关系,并联立第(1)问结果解关于a,b的方程组可解.
点评 本题主要考查了正弦定理,三角函数恒等变换的应用,考查了等差数列的性质,考查了转化思想,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{5}$ | B. | $\frac{2}{5}$ | C. | ±$\frac{2}{5}$ | D. | ±$\frac{3}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)=$\sqrt{1+x}+\sqrt{1-x}$ | B. | f(x)=x3-1 | C. | f(x)=$\sqrt{1+x}-\sqrt{1-x}$ | D. | f(x)=-$\frac{1}{x^2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com