分析 (1)运用倍角公式,辅助角公式化简函数式,再求函数的单调区间;
(2)先求出g(x)的解析式,再结合正弦函数图象求其值域.
解答 解:(Ⅰ)f(x)=sin2x+cos2x+2sinxcosx+cos2x-2
=$sin2x+cos2x-1=\sqrt{2}sin(2x+\frac{π}{4})-1$,
当$2kπ-\frac{π}{2}≤2x+\frac{π}{4}≤2kπ+\frac{π}{2},k∈Z$时,
解得,$kπ-\frac{3π}{8}≤x≤kπ+\frac{π}{8},k∈Z$,
∴函数f(x)的单调递增区间为$[kπ-\frac{3π}{8},kπ+\frac{π}{8}](k∈Z)$.
(Ⅱ)将函数f(x)的图象上每一点的横坐标伸长到原来的两倍,
纵坐标不变,得到函数$g(x)=\sqrt{2}sin(x+\frac{π}{4})-1$,
当$x∈[\frac{π}{12},π]$时,$x+\frac{π}{4}∈[\frac{π}{3},\frac{5π}{4}]$,
①当$x+\frac{π}{4}=\frac{π}{2}$,即$x=\frac{π}{4}$时,g(x)取得最大值,g(x)max=$\sqrt{2}$-1;
②当$x+\frac{π}{4}=\frac{5π}{4}$,即x=π时,g(x)取得最小值,g(x)min=-2,
故函数g(x)的值域为$[-2,\sqrt{2}-1]$.
点评 本题主要考查了三角函数的图象与性质,涉及三角函数恒等变形,单调性和最值,以及函数图象变换,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{12}$ | B. | $\frac{π}{6}$ | C. | $\frac{π}{3}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-3,-1)∪(0,2) | B. | (-3,-2)∪(-1,0) | C. | (-2,-1)∪(0,3) | D. | (-3,-2)∪(0,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-4) | B. | (-4,0) | C. | (-∞,-1) | D. | (-1,0) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com