精英家教网 > 高中数学 > 题目详情
4.关于x的不等式ax-b>0的解集是(1,+∞),则关于x的不等式$\frac{ax+b}{x-2}$>0的解集是(  )
A.{x|x<-1或x>2}B.{x|-1<x<2}C.{x|1<x<2}D.{x|x<1或x>2}

分析 利用表示的解集,推出a、b关系,然后求解分式不等式的解集.

解答 解:关于x的不等式ax-b>0的解集是(1,+∞),
可得a>0,并且a=b,
则关于x的不等式$\frac{ax+b}{x-2}$>0,
化为:$\frac{x+1}{x-2}>0$,
即:(x+1)(x-2)>0,
不等式的解集为:{x|x<-1或x>2}.
故选:A.

点评 本题考查不等式的解法,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源:2016-2017学年北京昌平临川育人学校等高一上月考一数学试卷(解析版) 题型:选择题

为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文a,b,c,d对应密文a+2b,2b+c,2c+3d,4d,例如,明文1,2,3,4对应密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为

A.6,4, 1,7 B.7,6,1,4

C.4,6,1,7 D.1,6,4,7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知对于任意实数x,kx2-2x+k恒为正数,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数y=$\sqrt{3}$sinxcosx+cos2x-$\frac{1}{2}$在[0,$\frac{π}{2}$]的值域是[$-\frac{1}{2}$,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知a+b+c=0,求a$(\frac{1}{b}+\frac{1}{c})+b(\frac{1}{c}+\frac{1}{a})+c(\frac{1}{a}+\frac{1}{b})$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设实数a>-1,b>0,且满足ab+a+b=1,则$\frac{ab+b}{b+2}$的最大值为6-4$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知a∈R,函数f(x)=$\frac{1}{3}$x3-x2+ax-a+1.
(1)若f(x)是区间[0,2]上的单调函数,求实数a的取值范围;
(2)在(1)条件下,记M(a)是|f(x)|在区间[0,2]上的最大值,求证:M(a)≥$\frac{5}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求下列函数的值域.
(1)y=ln(1-2x),x∈(-∞,0];
(2)y=$\root{3}{x+2}$,x∈(-∞,+∞);
(3)y=$\frac{2-x}{1+x}$,x≠-1;
(4)y=2cos$\frac{x}{2}$,x∈[0,2π].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知a,b>0,a2+b2=1,求证a+b+$\frac{1}{ab}$≥2+$\sqrt{2}$.

查看答案和解析>>

同步练习册答案