精英家教网 > 高中数学 > 题目详情
用分离常数法求y=
3x2-2
x2-2
的值域.
考点:函数的值域
专题:计算题,函数的性质及应用
分析:利用分离常数法化简y=
3x2-2
x2-2
=3+
4
x2-2
;从而求函数的值域.
解答: 解:y=
3x2-2
x2-2
=3+
4
x2-2

∵x2-2≥-2,
4
x2-2
≤-2或
4
x2-2
>0;
故3+
4
x2-2
≤1或
4
x2-2
>3;
故y=
3x2-2
x2-2
的值域为(-∞,1]∪(3,+∞).
点评:本题考查了函数值域的求法.高中函数值域求法有:1、观察法,2、配方法,3、反函数法,4、判别式法;5、换元法,6、数形结合法,7、不等式法,8、分离常数法,9、单调性法,10、利用导数求函数的值域,11、最值法,12、构造法,13、比例法.要根据题意选择.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=log3(1-x)+log3(x+5).
(1)求函数f(x)的定义域;
(2)求函数f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱柱ABCD-A1B1C1D1中,A1A⊥底面ABCD,∠BAD=90°,AD∥BC,且A1A=AD=2BC=2,AB=1.点E在棱AB上,平面A1EC与棱C1D1相交于点F.
(Ⅰ)求证:A1F∥平面B1CE; 
(Ⅱ)求证:AC⊥平面CDD1C1
(Ⅲ)写出三棱锥B1-A1EF体积的取值范围.(结论不要求证明)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a2=2,Sn为其前n项和,且Sn=
an(n+1)
2
(n∈N*).
(1)求a1的值;
(2)求证:an=
n
n-1
an-1(n≥2);
(3)若bn=an•2 -an+1,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x∈(0,
π
2
)时,函数h(x)=
1+2sin2x
sin2x
的最小值为b,若定义在R上的函数f(x)满足对任意的x,y都有f(x+y)=f(x)+f(y)-b成立,设M,N分别为f(x)在[-b,b]上的最大值与最小值,则M+N的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)是以2为周期的周期函数,f(-3)=1,则f(5)=
 

函数f(x)是以5为周期的周期函数,f(-3)=1,则f(12)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=
x2-x
x2-x+1
的值域是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的短轴长为2,右焦点F与抛物线y2=4x的焦点重合.
(I)求椭圆C的标准方程;
(Ⅱ)过点(0,-
1
3
)
且斜率为k的直线l与椭圆C交于A、B两点,求证:以AB为直径的圆必过y轴上的一定点M,并求出点M的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,AF=
1
3
AB,D为BC的中点,AD与CF交于点E,若
AB
=
a
AC
=
b
,且
CE
=x
a
+y
b
,则x+y=
 

查看答案和解析>>

同步练习册答案