精英家教网 > 高中数学 > 题目详情
(2012•临沂二模)从小到大排列的三个数构成等比数列,它们的积为8,并且这三个数分别加上2、2、1后成等差数列{an}中的a3、a4、a5
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=
an+1
an
+
an
an+1
,数列{bn}的前项和为Tn,求Tn
分析:(Ⅰ)先通过条件计算出a3、a4、a5,进而求出首项和公差,从而求出通项公式.
(Ⅱ)通过式子求bn,然后求Tn
解答:解:(Ⅰ)设小到大排列的三个数分别为
a
q
,a,aq
,则
a
q
?a?aq=a3=8
,解得a=2.所以这三个数为
2
q
,2,2q
.这三个数分别加上2、2、1后为
2
q
+2,4,2q+1
,即a3=
2
q
+2,a4=4,a5=2q+1

又a3、a4、a5为等差数列,所以a3+a5=2a4,即
2
q
+2+2q+1=2×4=8
,即2q2-5q+2=0.解得q=2或q=
1
2

因为三个数是从小到大成等比数列,所以q=
1
2
不成立,舍去,所以q=2.
所以三个数为,1,2,4.即a3=3,a4=4,a5=5.
所以公差d=1,所以数列{an}的通项公式为an=a3+(n-3)=n,n∈N
(Ⅱ)因为bn=
an+1
an
+
an
an+1
=
n+1
n
+
n
n+1
=2+
1
n
-
1
n+1

所以Tn=(2+1-
1
2
)+(2+
1
2
-
1
3
)+…+(2+
1
n
-
1
n+1
)

=2n+1-
1
2
+
1
2
-
1
3
+…+
1
n
-
1
n+1
=2n+1-
1
n+1
=2n+
n
n+1

即数列{bn}的前项和为Tn=2n+
n
n+1
,n∈N
点评:本题考查等差数列和等比数列的基本运算,等差数列的通项公式,以及数列求和.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•临沂二模)在圆x2+y2=4上任取一点P,过点P作x轴的垂线段,D为垂足,点M在线段PD上,且|DP|=
2
|DM|,点P在圆上运动.
(Ⅰ)求点M的轨迹方程;
(Ⅱ)过定点C(-1,0)的直线与点M的轨迹交于A、B两点,在x轴上是否存在点N,使
NA
NB
为常数,若存在,求出点N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•临沂二模)已知Ω={(x,y)|0≤x≤1,0≤y≤1},A是由直线y=0,x=a(0<a≤1)和曲线y=x3围成的曲边三角形的平面区域,若向区域Ω上随机投一点P,点P落在区域A内的概率是
1
64
,则a的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•临沂二模)若某程序框图如图所示,则输出的p的值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•临沂二模)若纯虚数z满足(2-i)z=4-bi,(i是虚数单位,b是实数),则b=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•临沂二模)已知命题p:?x∈[1,2],x2-a≥0,命题q:?x∈R.x2+2ax+2-a=0,若“p且q”为真命题,则实数a的取值范围是(  )

查看答案和解析>>

同步练习册答案