精英家教网 > 高中数学 > 题目详情
设函数f(x)=|sin(x+
π
3
)|(x∈R),求f(x)的单调递增区间.
考点:正弦函数的单调性
专题:三角函数的图像与性质
分析:根据函数y=|sinx|的增区间,令kπ≤x+
π
3
≤kπ+
π
2
,k∈z,求得x的范围,可得f(x)的单调递增区间.
解答: 解:令kπ≤x+
π
3
≤kπ+
π
2
,k∈z,求得kπ-
π
3
≤x≤kπ+
π
6

可得函数f(x)的增区间为[kπ-
π
3
,kπ+
π
6
],k∈z.
点评:本题主要考查函数y=|sinx|的增区间,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
2
2
,且a2+b=3,过它的右焦点F分别作直线l1、l2,其中l1交椭圆于P、Q两点,l2交椭圆于M、N两点,且l1⊥l2(如图5所示).
(Ⅰ)求椭圆的标准方程;
(Ⅱ)求四边形MPNQ的面积S的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(ωx+φ)其中A>0,ω>0,0<φ<
π
2
的图象如图所示.则函数y=f(x)的解析式为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在上的奇函数,当x>0时,f(x)=x(1-x2)那么方程f(x)=0的实数跟个数为(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=loga(ax2-x+3)在[2,4]上是增函数,则实数a的取值范围是(  )
A、a>1
B、0<a<1或a>1
C、
1
16
<a≤
1
8
D、
1
16
<a
1
8
或a>1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x),(x≠0)对于任意的x,y∈R且x,y≠0满足f(xy)=f(x)+f(y).
(Ⅰ)求f(1),f(-1)的值;
(Ⅱ)判断函数y=f(x),(x≠0)的奇偶性;
(Ⅲ)若函数y=f(x)在(0,+∞)上是增函数,解不等式f(
1
6
x)+f(x-5)≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合M={(x,y)|x∈R,y∈R},定义映射f:N*→M满足:对任意n∈N*都有f(n)=(xn,yn),f(n+1)=(-
1
2
xn
+
3
2
a,yn+
1
4n2-1
),且f(1)=(
3
2
a,1),其中常数a>0.
(Ⅰ)求yn的表达式;
(Ⅱ)判断xn与a的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

在1,2,3,4四个数中,任取两个不同的数,其和大于积的概率是(  )
A、
1
6
B、
1
3
C、
1
2
D、
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:
(1)(x3lnx)′;
(2)(exsinx)′.

查看答案和解析>>

同步练习册答案