精英家教网 > 高中数学 > 题目详情
(2013•盐城一模)近年来,某企业每年消耗电费约24万元,为了节能减排,决定安装一个可使用15年的太阳能供电设备接入本企业电网,安装这种供电设备的工本费(单位:万元)与太阳能电池板的面积(单位:平方米)成正比,比例系数约为0.5.为了保证正常用电,安装后采用太阳能和电能互补供电的模式.假设在此模式下,安装后该企业每年消耗的电费C(单位:万元)与安装的这种太阳能电池板的面积x(单位:平方米)之间的函数关系是C(x)=
k20x+100
(x≥0,k为常数).记F为该村安装这种太阳能供电设备的费用与该村15年共将消耗的电费之和.
(1)试解释C(0)的实际意义,并建立F关于x的函数关系式;
(2)当x为多少平方米时,F取得最小值?最小值是多少万元?
分析:(1)C(0)的实际意义是安装这种太阳能电池板的面积为0时的用电费用,依题意,C(0)=
k
100
=24,可求得k,从而得到F关于x的函数关系式;
(2)利用基本不等式即可求得F取得的最小值及F取得最小值时x的值.
解答:解:(1)C(0)的实际意义是安装这种太阳能电池板的面积为0时的用电费用,
即未安装电阳能供电设备时全村每年消耗的电费…(2分)
由C(0)=
k
100
=24,得k=2400 …(3分)
所以F=15×
2400
20x+100
+0.5x=
1800
x+5
+0.5x,x≥0…(7分)
(2)因为
1800
x+5
+0.5(x+5)-2.5≥2
1800×0.5
-2.5=57.5,…(10分)
当且仅当
1800
x+5
=0.5(x+5),即x=55时取等号 …(13分)
所以当x为55平方米时,F取得最小值为57.5万元…(14分)
点评:本题考查函数最值的应用,着重考查分析与理解能力,考查基本不等式的应用,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•盐城一模)已知f(x)=(2+
x
)n
,其中n∈N*
(1)若展开式中含x3项的系数为14,求n的值;
(2)当x=3时,求证:f(x)必可表示成
s
+
s-1
(s∈N*)的形式.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•盐城一模)若数列{an}是首项为6-12t,公差为6的等差数列;数列{bn}的前n项和为Sn=3n-t.
(1)求数列{an}和{bn}的通项公式;
(2)若数列{bn}是等比数列,试证明:对于任意的n(n∈N,n≥1),均存在正整数Cn,使得bn+1=a cn,并求数列{cn}的前n项和Tn
(3)设数列{dn}满足dn=an•bn,且{dn}中不存在这样的项dt,使得“dk<dk-1与dk<dk+1”同时成立(其中k≥2,k∈N*),试求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•盐城一模)如图,在等腰三角形ABC中,底边BC=2,
AD
=
DC
AE
=
1
2
EB
,若
BD
AC
=
1
2
,则
CE
AB
=
0
0

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•盐城一模)在△ABC中,若9cos2A-4cos2B=5,则
BC
AC
的值为
2
3
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•盐城一模)D.(选修4-5:不等式选讲)
设a1,a2,…an 都是正数,且 a1•a2…an=1,求证:(1+a1)(1+a2)…(1+an)≥2n

查看答案和解析>>

同步练习册答案