【题目】已知f(x)=a
(a>0且a≠1),若f(lga)=
,则a= .
【答案】10或 ![]()
【解析】解:因为函数f(x)=
(a>0且a≠1),
所以f(lga)=
=
,
两边取以10为底的对数,得:(lga﹣
)lga=
,
解得:lga=1或lga=﹣
,
∴a=10或a=
所以答案是:10或
.
【考点精析】本题主要考查了函数的零点与方程根的关系的相关知识点,需要掌握二次函数的零点:(1)△>0,方程 有两不等实根,二次函数的图象与 轴有两个交点,二次函数有两个零点;(2)△=0,方程 有两相等实根(二重根),二次函数的图象与 轴有一个交点,二次函数有一个二重零点或二阶零点;(3)△<0,方程 无实根,二次函数的图象与 轴无交点,二次函数无零点才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】一次测验共有4个选择题和2个填空题,每答对一个选择题得20分,每答对一个填空题得10分,答错或不答得0分,若某同学答对每个选择题的概率均为
,答对每个填空题的概率均为
,且每个题答对与否互不影响.
(1)求该同学得80分的概率;
(2)若该同学已经答对了3个选择题和1个填空题,记他这次测验的得分为ξ,求ξ的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
过点
,
为椭圆的半焦距,且
,过点
作两条互相垂直的直线
,
与椭圆
分别交于另两点
,
.
(1)求椭圆
的方程;
(2)若直线
的斜率为
,求
的面积;
(3)若线段
的中点在
轴上,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,菱
与四边形BDEF相交于BD,
平面ABCD,DE//BF,BF=2DE,AF⊥FC,M为CF的中点,
.
(I)求证:GM//平面CDE;
(II)求证:平面ACE⊥平面ACF.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】己知函数
(其中e为自然对数的底数),
.
(I)求函数
的单调区间;
(II)设
,.已知直线
是曲线
的切线,且函数
上是增函数.
(i)求实数
的值;
(ii)求实数c的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设p:实数x满足x2﹣4ax+3a2<0,其中a>0,命题q:实数x满足
.
(1)若a=1,且p∨q为真,求实数x的取值范围;
(2)若p是q的必要不充分要条件,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系
中,圆
的参数方程为
(
为参数),以O为极点,
轴的非负半轴为极轴建立极坐标系.
(Ⅰ)求圆
的普通方程;
(Ⅱ)直线
的极坐标方程是
,射线
与圆C的交点为
,与直线
的交点为
,求线段
的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列{an}的前n项和为Sn , 且a1+a3=10,S4=24.
(1)求数列{an}的通项公式;
(2)令Tn=
,求证:Tn<
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com