精英家教网 > 高中数学 > 题目详情

【题目】如图,菱与四边形BDEF相交于BD, 平面ABCD,DE//BF,BF=2DE,AF⊥FC,M为CF的中点,

(I)求证:GM//平面CDE;

(II)求证:平面ACE⊥平面ACF.

【答案】(1)详见解析;(2)详见解析.

【解析】试题分析:(1) 的中点,连接.,又因为,所以平面平面,又平面,所以平面;(2) 连接.设菱形的边长为2,则 ,则 ,且平面 ,得平面,所以 平面,又平面,所以平面平面.

试题解析:证明:(Ⅰ)取的中点,连接.

因为为菱形对角线的交点,所以中点,所以,又因为分别为

的中点,所以,又因为,所以,又

所以平面平面

平面,所以平面

(Ⅱ)证明:连接,因为四边形为菱形,

所以,又平面,所以

所以.

设菱形的边长为2,

又因为,所以

,且平面 ,得平面

在直角三角形中,

又在直角梯形中,得

从而,所以,又

所以平面,又平面

所以平面平面.

点睛:直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行,即线线平行推出线面平行.两平面垂直的判定有两种方法:(1)两个平面所成的二面角是直角;(2)一个平面经过另一平面的垂线.掌握基本的判定和性质定理外还应理解线线、线面、面面垂直的转化思想,逐步学会综合运用数学知识分析解决问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义在R上的奇函数,且当x≥0时f(x)=
(1)求f(x)的解析式;
(2)判断f(x)的单调性(不必证明);
(3)若对任意的t∈R,不等式f(k﹣3t2)+f(t2+2t)≤0恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C的焦点为F,直线y轴的交点为P,与C的交点为Q,且.

1)求C的方程;

2)过F的直线C相交于AB两点,若AB的垂直平分线C相较于MN两点,且AMBN四点在同一圆上,求的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:x∈[1,2],x2≥a;命题q:x∈R,x2+2ax+2﹣a=0,若命题p∧q是真命题,则实数a的取值范围是(
A.a≤﹣2或a=1
B.a≤﹣2或1≤a≤2
C.a≥1
D.﹣2≤a≤1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知函数

(I)求函数的单调区间;

(II)设,已知函数上是增函数.

(1)研究函数上零点的个数;

(ii)求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两位学生参加数学竞赛培训,他们在培训期间8次模拟考试的成绩如下: 甲:82 81 79 78 95 88 93 84
乙:92 95 80 75 83 80 90 85
(1)画出甲、乙两位学生成绩的茎叶图,并求学生乙成绩的平均数和方差;
(2)从甲同学超过80分的6个成绩中任取两个,求这两个成绩中至少有一个超过90分的概率.
(3)甲同学超过80(分)的成绩有82 81 95 88 93 84,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=a (a>0且a≠1),若f(lga)= ,则a=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在等差数列{an}中,a1=3,其前n项和为Sn , 等比数列{bn}的各项均为正数,b1=1,公比为q(q≠0),且b2+S2=12,
(1)求{an}与{bn}的通项公式;
(2)证明: + +…+

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某几何体的三视图中,俯视图是边长为2的正三角形,正视图和左视图分别为直角梯形和直角三角形,则该几何体的体积为( )

A. B. C. D.

查看答案和解析>>

同步练习册答案