【题目】在等差数列{an}中,a1=3,其前n项和为Sn , 等比数列{bn}的各项均为正数,b1=1,公比为q(q≠0),且b2+S2=12,
.
(1)求{an}与{bn}的通项公式;
(2)证明:
+
+…+
.
科目:高中数学 来源: 题型:
【题目】已知空间四边形ABCD的两条对角线的长AC=6,BD=8,AC与BD所成的角为30o , E,F,G,H分别是AB,BC,CD,DA的中点,求四边形EFGH的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,菱
与四边形BDEF相交于BD,
平面ABCD,DE//BF,BF=2DE,AF⊥FC,M为CF的中点,
.
(I)求证:GM//平面CDE;
(II)求证:平面ACE⊥平面ACF.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设p:实数x满足x2﹣4ax+3a2<0,其中a>0,命题q:实数x满足
.
(1)若a=1,且p∨q为真,求实数x的取值范围;
(2)若p是q的必要不充分要条件,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系
中,圆
的参数方程为
(
为参数),以O为极点,
轴的非负半轴为极轴建立极坐标系.
(Ⅰ)求圆
的普通方程;
(Ⅱ)直线
的极坐标方程是
,射线
与圆C的交点为
,与直线
的交点为
,求线段
的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在锐角△ABC中,a、b、c分别为∠A、∠B、∠C所对的边,且
a=2csinA.
(1)确定∠C的大小;
(2)若c=
,求△ABC周长的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com