精英家教网 > 高中数学 > 题目详情
2.从长为1,2,3,4,5的5条线段中任取3条,记事件A为此3条线段构成三角形,记事件B为此3条线段构成直角三角形,则P(B|A)=$\frac{1}{3}$.

分析 利用列举法求出P(A),P(AB),代入条件概率公式计算.

解答 解:从5条选段中任取3条共有${C}_{5}^{3}$=10种取法,
其中能组成三角形的取法共有3种,分别是(2,3,4),(2,4,5),(3,4,5),
∴P(A)=$\frac{3}{10}$,
而这三种取法中,只有1种取法可构成直角三角形,即(3,4,5),
∴P(AB)=$\frac{1}{10}$,
∴P(B|A)=$\frac{P(AB)}{P(A)}$=$\frac{1}{3}$.
故答案为:$\frac{1}{3}$.

点评 本题考查了古典概型,条件概率的计算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=(ex-e-x)x.若f(log3x)+f(log${\;}_{\frac{1}{3}}$x)≤2f(1),则x的取值范围(  )
A.(-∞$\frac{1}{3}$]∪[3,+∞)B.[$\frac{1}{3}$,3]C.[$\frac{1}{3}$,1]D.[1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知锐角α,β满足sinα=$\frac{{\sqrt{10}}}{10},cosβ=\frac{{2\sqrt{5}}}{5}$,则α+β的值为(  )
A.$\frac{3π}{4}$B.$\frac{π}{4}$C.$\frac{π}{6}$D.$\frac{3π}{4}$或$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.集合M={x|x=$\frac{k•180°}{2}$±45°,k∈Z},N={x|x=$\frac{k•180°}{4}$±90°,k∈Z},则M、N之间的关系为(  )
A.M=NB.M?NC.M?ND.M∩N=∅

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.有甲、乙、丙、丁、戊5位同学,求:
(1)5位同学站成一排,甲、戊不在两端有多少种不同的排法?
(2)5位同学站成一排,要求甲乙必须相邻,丙丁不能相邻,有多少种不同的排法?
(3)将5位同学分配到三个班,每班至少一人,共有多少种不同的分配方法?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.6个人排成一排,其中甲和乙必须相邻,而丙丁不能相邻,则不同的排列方法有144种.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若复数z=$\frac{1+i}{1-i}$,$\overline z$为z的共轭复数,则($\overline z$)5=(  )
A.iB.-iC.-25iD.25i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知向量$\overrightarrow{a}$=(1,2),向量$\overrightarrow{b}$=(x,-1),若向量$\overrightarrow{a}$与向量$\overrightarrow{b}$夹角为钝角,则x的取值范围为(-∞,-$\frac{1}{2}$)∪(-$\frac{1}{2}$,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列求导运算正确的是 (  )
A.(log2x)′=$\frac{1}{xln2}$B.(x+$\frac{1}{x}$)′=1+$\frac{1}{{x}^{2}}$
C.(cosx)′=sinxD.($\frac{{e}^{x}}{x}$)′=$\frac{x{e}^{x}+{e}^{x}}{{x}^{2}}$

查看答案和解析>>

同步练习册答案