精英家教网 > 高中数学 > 题目详情
12.下列求导运算正确的是 (  )
A.(log2x)′=$\frac{1}{xln2}$B.(x+$\frac{1}{x}$)′=1+$\frac{1}{{x}^{2}}$
C.(cosx)′=sinxD.($\frac{{e}^{x}}{x}$)′=$\frac{x{e}^{x}+{e}^{x}}{{x}^{2}}$

分析 利用导数的运算法则即可得出.

解答 解:$(lo{g}_{2}x)^{′}$=$\frac{1}{xln2}$,$(x+\frac{1}{x})^{′}$=1-$\frac{1}{{x}^{2}}$,(cosx)′=-sinx,$(\frac{{e}^{x}}{x})^{′}$=$\frac{x{e}^{x}-{e}^{x}}{{x}^{2}}$,
可知:只有A正确.
故选:A.

点评 本题考查了导数的运算法则,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.从长为1,2,3,4,5的5条线段中任取3条,记事件A为此3条线段构成三角形,记事件B为此3条线段构成直角三角形,则P(B|A)=$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=$\frac{1}{3}$x3-x2-x+m在[0,1]上的最小值为$\frac{1}{3}$,则实数m的值为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.过点A(3,-1)且在两坐标轴上截距相等的直线有(  )
A.1条B.2条C.3条D.4条

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知抛物线C:y2=4x的焦点为F,设过抛物线上一点P处的切线为l1,过点F且垂直于PF的直线为l2,则l1与l2交点Q的横坐标为(  )
A.-$\frac{3}{4}$B.-1C.-$\frac{4}{3}$D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知$\overrightarrow a$=(m-3,m+3),$\overrightarrow b$=(2m+1,-m+4),且1≤m≤5,则$\overrightarrow{a}$•$\overrightarrow{b}$的取值范围是[5,14].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.观察下列等式:13=12,13+23=32,13+23+33=62,13+23+33+43=102…;
(1)根据上述规律,写出第n个等式;
(2)用数学归纳法证明(1)中所写的等式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在正方体ABCDA1B1C1D1中,M是棱CD上的动点,则直线MC1与平面AA1B1B的位置关系是(  )
A.相交B.平行C.异面D.相交或平行

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设曲线C1:$\left\{\begin{array}{l}x=\sqrt{2}cosθ\\ y=sinθ\end{array}$(其中θ为参数).曲线${C_2}:ρcos(θ-\frac{π}{4})=\frac{{\sqrt{2}}}{4}$
(Ⅰ)将曲线C1和C2,化为直角坐标系下的方程:
(Ⅱ)设C1和C2的交点分别为A,B.求线段AB的中垂线的参数方程.

查看答案和解析>>

同步练习册答案