精英家教网 > 高中数学 > 题目详情
1.在正方体ABCDA1B1C1D1中,M是棱CD上的动点,则直线MC1与平面AA1B1B的位置关系是(  )
A.相交B.平行C.异面D.相交或平行

分析 根据面面平行的性质即可得出结论.

解答 解析:∵MC1?平面DD1C1C,平面AA1B1B∥平面DD1C1C,
∴MC1∥平面AA1B1B.
故选B.

点评 本题考查了面面平行的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知向量$\overrightarrow{a}$=(1,2),向量$\overrightarrow{b}$=(x,-1),若向量$\overrightarrow{a}$与向量$\overrightarrow{b}$夹角为钝角,则x的取值范围为(-∞,-$\frac{1}{2}$)∪(-$\frac{1}{2}$,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列求导运算正确的是 (  )
A.(log2x)′=$\frac{1}{xln2}$B.(x+$\frac{1}{x}$)′=1+$\frac{1}{{x}^{2}}$
C.(cosx)′=sinxD.($\frac{{e}^{x}}{x}$)′=$\frac{x{e}^{x}+{e}^{x}}{{x}^{2}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.从某居民区随机抽取10个家庭,获得第i个家庭的月收入xi(单位:千元)与月储蓄yi(单位:千元)的数据资料,算得$\sum_{i=1}^{10}{x_i}$=80,$\sum_{i=1}^{10}{y_i}$=20,$\sum_{i=1}^{10}{{x_i}{y_i}}$=184,$\sum_{i=1}^{10}{x_i^2}$=720.
(1)求家庭的月储蓄y对月收入x的线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$时,并判断变量x与y之间是正相关还是负相关;
(2)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=-$\frac{1}{2}$cos2x-sinx-$\frac{1}{4}$,x∈R.
(1)求不等式f(x)≤0的解集;
(2)讨论函数f(x)在[0,2π]的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数$f(x)=\left\{\begin{array}{l}a•{2^x},x≥0\\{2^{-x}},x<0\end{array}\right.$(a∈R),若f(f(-1))=1,则a=(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知x,y∈R,若(x+2)i-2=(5x+2y)i-2,则2x+y=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在△ABC中,角A,B,C的对边分别为a,b,c,满足((2b-c)cosA=acosc
(Ⅰ)求角A的大小;
(Ⅱ)若a=3,△ABC的面积是$\frac{{9\sqrt{3}}}{4}$,求△ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.对于函数y=sin($\frac{13}{2}$π-x),下面说法中正确的是(  )
A.函数是周期为2π的偶函数B.函数是周期为π的偶函数
C.函数是周期为2π的奇函数D.函数是周期为π的奇函数

查看答案和解析>>

同步练习册答案