精英家教网 > 高中数学 > 题目详情
挪威数学家阿贝尔曾经根据阶梯形图形的两种不同分割(如下图),利用它们的面积关系发现了一个重要的恒等式——阿贝尔公式:

a1b1+a2b2+a3b3+…+anbn=L1(b1-b2)+L2(b2-b3)+L3(b3-b4)+…+Ln-1(bn-1-bn)+Lnbn,其中L1=a1,则
(Ⅰ)L3           
(Ⅱ)Ln                 
(Ⅰ);(Ⅱ).

试题分析:由图可知.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

)在计算“1×2+2×3+…+n(n+1)”时,某同学学到了如下一种方法:先改写第k项:
k(k+1)=[k(k+1)(k+2)-(k-1)k(k+1)],
由此得1×2=(1×2×3-0×1×2),
2×3=(2×3×4-1×2×3),…,
n(n+1)=[n(n+1)(n+2)-(n-1)n(n+1)].
相加,得1×2+2×3+…+n(n+1)=n(n+1)(n+2).
类比上述方法,请你计算“1×2×3+2×3×4+…+n(n+1)(n+2)”,其结果为    .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

观察下列等式:
=1;
=12;
=39;
……
则当m<n且m,n∈N时,
+…+=________(最后结果用m,n表示).

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图所示,第个图形是由正边形拓展而来(),则第个图形共有____个顶点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知f(n)=1+(n∈N*),经计算得f(4)>2,f(8)>,f(16)>3,f(32)>,……,观察上述结果,则可归纳出一般结论为     

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知,则在下列的一段推理过程中,错误的推理步骤有           .(填上所有错误步骤的序号)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

科拉茨是德国数学家,他在1937年提出了一个著名的猜想:任给一个正整数n,如果n是偶数,就将它减半(即);如果n是奇数,则将它乘3加1(即),不断重复这样的运算,经过有限步后,一定可以得到1.如初始正整数为6,按照上述变换规则,我们可以得到一个数列:6,3,10,5,16,8,4,2,1.对于科拉茨猜想,目前谁也不能证明,也不能否定,现在请你研究:
(1)如果,则按照上述规则施行变换后的第8项为           
(2)如果对正整数(首项)按照上述规则施行变换后的第8项为1(注:1可以多次出现),则的所有不同值的个数为           

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

观察下列恒等式:
 
∴tanα-=-
∴tan2α-=-
tan4α-=-
由此可知:tan+2tan+4tan=(  )
A.-2B.-4C.-6D.-8

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

三角形的面积为为三角形的边长,r为三角形内切圆的半径,利用类比推理,可得出四面体的体积为(  )
A.
B.
C.
D.分别为四面体的四个面的面积,r为四面体内切球的半径)

查看答案和解析>>

同步练习册答案