精英家教网 > 高中数学 > 题目详情
8.设全集U=R,集合A={x|1≤x<4},B={x|2a≤x<3-a}.
(1)若a=-2,求B∩A,B∩∁UA;
(2)若A∪B=A,求实数a的取值范围.

分析 (1)利用已知条件求出A的补集,然后直接求解即可.
(2)分类讨论B是否是空集,列出不等式组求解即可.

解答 解:(1)集合A={x|1≤x<4},∁UA={x|x<1或x≥4},a=-2时,B={-4≤x<5},…(2分)
所以B∩A=[1,4),B∩∁UA={x|-4≤x<1或4≤x<5}…(6分)
(2)若A∪B=A则B⊆A,分以下两种情形:
①B=∅时,则有2a≥3-a,∴a≥1…(8分)
②B≠∅时,则有$\left\{\begin{array}{l}2a<3-a\\ 2a≥1\\ 3-a≤4\end{array}\right.$,∴$\frac{1}{2}≤a<1$…(12分)
综上所述,所求a的取值范围为$a≥\frac{1}{2}$…(14分)

点评 本题考查集合的基本运算,补集以及并集的求法,考查分类讨论思想的应用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.某车间分批生产某种产品,每批的生产准备费用为800元,若每批生产x件,则平均仓储时间为$\frac{x}{8}$天,且每件产品每天的仓储费用为1元,为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品多少件?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知等比数列{an}的各项都是正数,且a4a10=16,则a7=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知顶点在单位圆上的△ABC,角A,B,C所对的边分别是a,b,c,且2acosA=ccosB+bcosC.
(1)求cosA的值;
(2)若b≥a,求2b-c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知向量|$\vec a$|=5,|$\vec b$|=4,若$\vec a$与$\vec b$的夹角为120°,则向量$\vec b$在向量$\vec a$方向上的投影为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=ax2+bx+1(a,b为实数,a≠0,x∈R).
(1)当函数f(x)的图象过点(-1,0),且方程f(x)=0有且只有一个根,求f(x)的表达式;
(2)若函数f(x)为偶函数且a>0,设F(x)=$\left\{\begin{array}{l}{f(x),x>0}\\{-f(x),x<0}\end{array}\right.$ 当m>-n>0,试判断F(m)+F(n)能否大于0?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=$\sqrt{3}$sinxcosx-cos2x-$\frac{1}{2}$.
(1)求函数y=f(x)在x∈[0,$\frac{π}{2}}$]时的值域;
(2)在△ABC中,角A、B、C所对的边分别为a、b、c,且满足c=2,a=3,f(B)=0,求边b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.函数f(x)=lnx在点P(x0,f(x0))处的切线l与函数g(x)=ex的图象也相切,则满足条件的切点P的个数有2个.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知△ABC中,$\frac{c-b}{c-a}$=$\frac{sinA}{sinC+sinB}$,则B=(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{3π}{4}$

查看答案和解析>>

同步练习册答案