精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=ax2+bx+1(a,b为实数,a≠0,x∈R).
(1)当函数f(x)的图象过点(-1,0),且方程f(x)=0有且只有一个根,求f(x)的表达式;
(2)若函数f(x)为偶函数且a>0,设F(x)=$\left\{\begin{array}{l}{f(x),x>0}\\{-f(x),x<0}\end{array}\right.$ 当m>-n>0,试判断F(m)+F(n)能否大于0?

分析 (1)由函数f(x)的图象过点(-1,0),且方程f(x)=0有且只有一个根,构造方程组,求出a,b的值,可得f(x)的表达式;
(2)若函数f(x)为偶函数且a>0,则b=0.进而f(x)=ax2+1.由F(x)=$\left\{\begin{array}{l}{f(x),x>0}\\{-f(x),x<0}\end{array}\right.$ m>-n>0,可得F(m)+F(n)=a(m2-n2)>0.

解答 解:(1)因为函数f(x)的图象过点(-1,0),
所以a-b+1=0.
因为方程f(x)=0有且只有一个根,所以△=b2-4a=0.
所以b2-4(b-1)=0.
即b=2,a=1.
所以f(x)=x2+2x+1.…(4分)
(2)f(x)为偶函数,且a>0,
所以b=0.
所以f(x)=ax2+1.
所以F(x)=$\left\{\begin{array}{l}{f(x),x>0}\\{-f(x),x<0}\end{array}\right.$=$\left\{\begin{array}{l}{ax}^{2}+1,x>0\\-{ax}^{2}-1,x<0\end{array}\right.$,
因为m>-n>0,
所以|m|>|n|.
此时F(m)+F(n)=f(m)-f(n)=am2+1-an2-1=a(m2-n2)>0.
所以F(m)+F(n)>0.         …(7分)

点评 本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.函数f(x)=$\frac{1}{x}$-x3的图象关于(  )
A.x轴对称B.y轴对称C.直线y=x对称D.坐标原点对称

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知关于x的方程为x2+mx+n2=0,
(Ⅰ)若m=1,n∈[-1,1],求方程有实数根的概率.
(Ⅱ)若m∈[-1,1],n∈[-1,1],求方程有实数根的概率.
(Ⅲ)在区间[0,1]上任取两个数m和n,利用随机数模拟的方法近似计算关于x的方程x2+mx+n2=0有实数根的概率,请写出你的试验方法.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知f(x)=$\frac{1-x}{1+x}$.
(1)若a∈R,且a≠0,求f(a-1);
(2)证明:f($\frac{1}{x}$)=-f(x)(x≠-1且x≠0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设全集U=R,集合A={x|1≤x<4},B={x|2a≤x<3-a}.
(1)若a=-2,求B∩A,B∩∁UA;
(2)若A∪B=A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知A,B,C,D是同一球面上的四个点,其中△ABC为正三角形,AD⊥平面ABC,AD=6,AB=3,则该球的表面积为(  )
A.45πB.24πC.32πD.48π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.等差数列{an}中,若a4=3,则a2+a3+a7=(  )
A.6B.9C.12D.15

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=$\left\{\begin{array}{l}1,x≥0\\-2,x<0\end{array}$,若x1,x2均满足不等式x+(x-1)f(x+1)≤5,则x1-x2的最大值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设对任意的实数x∈[-1,1],不等式x2+ax-3a<0总成立,则实数a的取值范围是($\frac{1}{2}$,+∞).

查看答案和解析>>

同步练习册答案