精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)=$\left\{\begin{array}{l}1,x≥0\\-2,x<0\end{array}$,若x1,x2均满足不等式x+(x-1)f(x+1)≤5,则x1-x2的最大值为6.

分析 利用已知条件化简不等式,求出解集,然后求解表达式的最值.

解答 解:原不等式$?\left\{\begin{array}{l}x+1≥0\\ x+x-1≤5\end{array}\right.$或$\left\{\begin{array}{l}x+1<0\\ x-2(x-1)≤5\end{array}\right.$,
解得-1≤x≤3或-3≤x≤1,
∴原不等式的解集为[-3,3],
则(x1-x2max=3-(-3)=6.
故答案为:6.

点评 本题考查函数的最值的求法,不等式的解法,转化思想的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知p:x2-2x-3<0,若|x-1|<a(a>0)是p的一个必要不充分条件,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=ax2+bx+1(a,b为实数,a≠0,x∈R).
(1)当函数f(x)的图象过点(-1,0),且方程f(x)=0有且只有一个根,求f(x)的表达式;
(2)若函数f(x)为偶函数且a>0,设F(x)=$\left\{\begin{array}{l}{f(x),x>0}\\{-f(x),x<0}\end{array}\right.$ 当m>-n>0,试判断F(m)+F(n)能否大于0?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.将函数f(x)=$\sqrt{3}$cos(πx)图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把图象上所有的点向右平移1个单位,得到函数g(x)的图象,则函数g(x)的单调递减区间是(  )
A.[2k-1,2k+2](k∈Z)B.[2k+1,2k+3](k∈Z)C.[4k+1,4k+3](k∈Z)D.[4k+2,4k+4](k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.函数f(x)=lnx在点P(x0,f(x0))处的切线l与函数g(x)=ex的图象也相切,则满足条件的切点P的个数有2个.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知集合A={x|-3<x<5},B={x|1<x<7},则A∪B为(  )
A.(1,5)B.(-3,1)C.(5,7]D.(-3,7)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.甲、乙两位数学老师组队参加某电视台闯关节目,共3关,甲作为嘉宾参与答题,若甲回答错误,乙作为亲友团在整个通关过程中至多只能为甲提供一次帮助机会,若乙回答正确,则甲继续闯关,若某一关通不过,则收获前面所有累积奖金.约定每关通过得到奖金2000元,设甲每关通过的概率为$\frac{3}{4}$,乙每关通过的概率为$\frac{1}{2}$,且各关是否通过及甲、乙回答正确与否均相互独立.
(1)求甲、乙获得2000元奖金的概率;
(2)设X表示甲、乙两人获得的奖金数,求随机变量X的分布列和数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.如图有4种不同的颜色可供选择,给图中的矩形A,B,C,D涂色,要求相邻的矩形涂色不同,则不同的涂法有72种.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=ex-ax-1.
(1)若函数f(x)在x=ln2处取极值,求a的值;
(2)讨论函数f(x)的单调性.

查看答案和解析>>

同步练习册答案