精英家教网 > 高中数学 > 题目详情
11.如图有4种不同的颜色可供选择,给图中的矩形A,B,C,D涂色,要求相邻的矩形涂色不同,则不同的涂法有72种.

分析 根据图形,首先确定涂A有4种涂法,则涂B有3种涂法,进而由C与A、B相邻,D只与C相邻,可以确定C、D的涂色的情况,最后由乘法原理,计算可得答案.

解答 解:根据题意,首先涂A有C41=4种涂法,则涂B有C31=3种涂法,
C与A、B相邻,则C有C21=2种涂法,
D只与C相邻,则D有C31=3种涂法.
所以,共有4×3×2×3=72种涂法,
故答案为72.

点评 本题考查排列、组合的应用,涉及“涂色”问题,是典型题目;分析时要按一定顺序,由相邻情况来确定可以涂色的情况数目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知f(x)=$\frac{1-x}{1+x}$.
(1)若a∈R,且a≠0,求f(a-1);
(2)证明:f($\frac{1}{x}$)=-f(x)(x≠-1且x≠0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=$\left\{\begin{array}{l}1,x≥0\\-2,x<0\end{array}$,若x1,x2均满足不等式x+(x-1)f(x+1)≤5,则x1-x2的最大值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知数列{an}满足an+2=an+1+an(n∈N*).若a1=2,a5=13,则a3=5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.数列{an}满足a1=a2=1,an+an+1+an+2=cos$\frac{2nπ}{3}$(n∈N*),若数列{an}的前n项和为Sn,则S2012的值为3+2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设集合A={1,2,3},B={1,3,5},则A∪B中的元素个数是4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设对任意的实数x∈[-1,1],不等式x2+ax-3a<0总成立,则实数a的取值范围是($\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.一只小蜜蜂在一个棱长为4的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体六个表面的距离均大于1,称其为“安全飞行”,则蜜蜂“安全飞行”的概率为$\frac{π}{48}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=2x+1+$\frac{a}{{2}^{x}}$,给出如下三个命题:
p1:?a∈R,使得函数y=f(x)的偶函数;
p2:若a=-3,则y=f(x)在($\frac{1}{2}$,+∞)上有零点;
p3:?a∈(-∞,-2],函数y=|f(x)|在[-$\frac{1}{2}$,3]上单调递增;
则下列命题正确的是(  )
A.¬p1B.p1∧p2C.p2∧p3D.p1∧(¬p3

查看答案和解析>>

同步练习册答案