精英家教网 > 高中数学 > 题目详情
对于任意的n∈N*,若数列{an}同时满足下列两个条件,则称数列{an}具有“性质m”:
;          
②存在实数M,使得an≤M成立.
(1)数列{an}、{bn}中,an=n、(n=1,2,3,4,5),判断{an}、{bn}是否具有“性质m”;
(2)若各项为正数的等比数列{cn}的前n项和为Sn,且,求证:数列{Sn}具有“性质m”;
(3)数列{dn}的通项公式(n∈N*).对于任意n∈[3,100]且n∈N*,数列{dn}具有“性质m”,求实数t的取值范围.
【答案】分析:(1)在数列{an}中,令n=1可验证不满足条件①;在数列{bn}中,按“性质m”的定义验证条件①②即可;
(2)将代入S3=可求得q,从而求得cn,Sn,利用放缩法可验证数列{Sn}满足及Sn<2;
(3)写出dn+1,dn+2,数列{dn}具有“性质m”,由条件①得dn+dn+2<2dn+1恒成立,代入后化简分离出t,转化为最值问题可得t的范围,在该范围下可判断数列{dn}为递增数列,从而可知{dn}最大项的值为d100,由此知存在M满足条件②,从而得知t的范围;
解答:(1)解:在数列{an}中,取n=1,则,不满足条件①,
所以数列{an}不具有“m性质”;
在数列{bn}中,b1=1,,b3=2,,b5=1,
,所以满足条件①;
(n=1,2,3,4,5)满足条件②,
所以数列{bn}具有“性质m”.
(2)证明:由于数列{cn}是各项为正数的等比数列,则公比q>0,
代入S3=,得6q2-q-1=0,解得(舍去),
所以c1=1,
对于任意的n∈N*,且Sn<2,
所以数列{Sn}满足条件①和②,所以数列{Sn}具有“m性质”;
(3)由于dn=,则
由于任意n∈[3,100]且n∈N*,数列{dn}具有“性质m”,所以dn+dn+2<2dn+1

化简得,t(n-2)>1,即对于任意n∈[3,100]且n∈N*恒成立,
所以t>1①,
=
由于n∈[3,100]及①,
所以dn+1>dn,即n∈[3,100]时,数列{dn}是单调递增数列,
所以{dn}最大项的值为
满足条件②只需即可,所以这样的M存在②,
所以t>1即可.
点评:本题考查等差数列、等比数列的综合,考查学生综合运用所学知识分析问题解决新问题的能力,考查学生对题目的阅读理解能力,对能力要求较高.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•芜湖二模)已知函数f(x)=
1
2
(x+
1
x
),x≥0
,an+1=f(an),对于任意的n∈N*,都有an+1<an
(Ⅰ)求a1的取值范围;
(Ⅱ)若a1=
3
2
,证明an<1+
1
2n+1
(n∈N+,n≥2).
(Ⅲ)在(Ⅱ)的条件下证明
a1
a2
+
a2
a3
+…+
an
an+1
-n<
2
+1.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2005•温州一模)已知数列{an}各项均为正数,Sn为其前n项的和.对于任意的n∈N*,都有4Sn=(an+1)2
(1)求数列{an} 的通项公式.
(2)若2n≥tSn 对于任意的n∈N* 恒成立,求实数t 的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•普陀区二模)对于任意的n∈N*,若数列{an}同时满足下列两个条件,则称数列{an}具有“性质m”:
an+an+2
2
an+1
;   ②存在实数M,使得an≤M成立.
(1)数列{an}、{bn}中,an=n、bn=2sin
6
(n=1,2,3,4,5),判断{an}、{bn}是否具有“性质m”;
(2)若各项为正数的等比数列{cn}的前n项和为Sn,且c3=
1
4
S3=
7
4
,证明:数列{Sn}具有“性质m”,并指出M的取值范围;
(3)若数列{dn}的通项公式dn=
t (3•2n-n)+1
2n
(n∈N*).对于任意的n≥3(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•普陀区二模)对于任意的n∈N*,若数列{an}同时满足下列两个条件,则称数列{an}具有“性质m”:
an+an+2
2
an+1
;          
②存在实数M,使得an≤M成立.
(1)数列{an}、{bn}中,an=n、bn=2sin
6
(n=1,2,3,4,5),判断{an}、{bn}是否具有“性质m”;
(2)若各项为正数的等比数列{cn}的前n项和为Sn,且c3=
1
4
S3=
7
4
,求证:数列{Sn}具有“性质m”;
(3)数列{dn}的通项公式dn=
t (3•2n-n)+1
2n
(n∈N*).对于任意n∈[3,100]且n∈N*,数列{dn}具有“性质m”,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)(1)证明:若数列{an}有递推关系an+1=Aan+B,其中A、B为常数,且A≠1,B≠0,则数列{an}是以A为公比的等比数列;

(2)若数列{an}对于任意的n∈N*都有Sn=2an-n,令f(x)=a1x+a2x2+…+anxn,求函数f(x)在x=1处的导数.

(文)设数列{an}的前n项和为Sn,已知对于任意的n∈N*,都有Sn=2an-n.

(1)求数列{an}的首项a1及递推关系式:an+1=f(an);

(2)先阅读下面的定理:“若数列{an}有递推关系an+1=Aan+B,其中A、B为常数,且A≠1,B≠0,

则数列{an}是以A为公比的等比数列”.请你在(1)的基础上应用本定理,求数列{an}的通项公式;

(3)求数列{an}的前n项和Sn

查看答案和解析>>

同步练习册答案